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Abstract 

Introduction: the recent zoonotic coronavirus virus 
outbreak of a novel type (COVID-19) has 
necessitated the adequate understanding of the 
evolutionary pathway of zoonotic viruses which 
adversely affects human populations for 
therapeutic constructs to combat the pandemic 
now and in the future. Methods: we analyzed 
conserved domains of the severe acute respiratory 
coronavirus 2 (SARS-CoV-2) for possible targets of 
viral entry inhibition in host cells, evolutionary 
relationship of human coronavirus (229E) and 
zoonotic coronaviruses with SARS-CoV-2 as well as 
evolutionary relationship between selected  
SARS-CoV-2 genomic data. Results: conserved 
domains with antagonistic action on host innate 
antiviral cellular mechanisms in SARS-CoV-2 
include nsp 11, nsp 13 etc. Also, multiple sequence 
alignments of the spike (S) gene protein of selected 
candidate zoonotic coronaviruses alongside the S 
gene protein of the SARS-CoV-2 revealed closest 
evolutionary relationship (95.6%) with pangolin 
coronaviruses (S) gene. Clades formed between 
Wuhan SARS-CoV-2 phylogeny data and five others 
suggests viral entry trajectory while revealing 
genomic and protein SARS-CoV-2 data from 
Philippines as early ancestors. Conclusion: 
phylogeny of SARS-CoV-2 genomic data suggests 
profiling in diverse populations with and without 
the outbreak alongside migration history and 
racial background for mutation tracking and 
dating of viral subtype divergence which is 
essential for effective management of present and 
future zoonotic coronavirus outbreaks. 

Introduction     

Coronaviruses (CoVs) are enveloped viruses with a 
positive-sense, single-stranded RNA genome 
belonging to the coronaviridae family [1]. CoVs are 
divided into alpha, beta, gamma and delta groups 
and the beta group is further composed of A, B, C 
and D subgroups [2]. The virus belongs to the 2B 
group of the beta-coronavirus family, which 
includes SARS-CoV and Middle East respiratory 

syndrome coronavirus MERS-CoV [3]. Their entry 
into respiratory and oesophageal routes accounts 
for mild to severe acute respiratory syndromes 
which has led to global epidemics with high 
morbidity, mortality and immense economic 
losses in affected human populations [4,5]. 
Encoded within the 3' end of the viral genome are 
the four main structural proteins of coronavirus 
particles: spike (S), membrane (M), envelope (E) 
and nucleocapsid (N) [6] as shown in Figure 1. 

Phylogenetic analyses of 15 human CoV whole 
genomes revealed 2019 novel CoV (2019-nCoV) 
genome shares highest nucleotide sequence 
identity with SARS-CoV (79.7%) while its two 
evolutionarily conserved regions (envelope and 
nucleocapsid proteins) had sequence homology of 
96% and 89.6% with same respectively [3]. Hence, 
the nomenclature for the novel type of the 
coronavirus outbreak. Surface proteins which stick 
out like crown tips (spikes) on coronaviruses binds 
to host cell receptors-angiotensin converting 
enzyme 2 (ACE 2) in epithelial cells in hosts. The S1 
subunit (N-terminal) of the surface protein 
facilitates binding to the ACE2 receptor while the 
S2 subunit (C-terminal) mediates host cell entry 
through the binding of the viral S protein to 
human dipeptidyl peptidase 4 (DPP4), marking 
onset of infection [7,8]. 

Interestingly, conserved domains of CoVs have 
been indicated in literatures as vital entry targets 
in vaccine and drug development [9,10]. However, 
growing variability and mutational changes in 
viruses can cause lack of specificity and reduce 
efficiency of therapeutic measures. Recombination 
serves central function in virus replication and 
evolution in viral infections such as HIV, Ebola and 
MERS [11,12] while molecular mechanisms (RNA 
fragmentation and trans-esterification reactions) 
are possible causes of RNA fragments ligation and 
subsequent increased novel recombination 
frequency observed among various RNA 
viruses [13]. Diverse host factors account for a 
great deal of genome variability in viral 
recombinants which ranges from multi-resistance 
to evolutionary novelties [14]. The emergence of 
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novel viral variants trafficked by humans and 
animals alike through global travel has remained a 
constant threat in public health and increasing 
complexity of host-viral interactivity in viral 
adaptation and evolution [15]. 

Methods     

Comparison and analyses of conserved domain of 
2019-nCoV/SARS-CoV-2 protein: reference 
number (initial entry with refSeq number 
NC_045512.1) SARS-CoV-2 was retrieved from 
National Centre for Biotechnological Information 
(NCBI) database and query for its conserved 
domains (CDS) was launched using affiliated 
resources. Proteins with similar conserved 
domains were included in the subsequent multiple 
sequence alignment of spike gene of zoonotic 
coronaviruses investigated in this study. 

Building the spike (S) gene protein candidates 
from zoonotic coronavirus hosts: the 
identification of highly related contigs in a set of 
viral genomes from blast search of SARS-CoV like 
sequences in NCBI database (included in 
supplementary data) directed our subsequent 
search of spike proteins in the selected nine 
zoonotic coronaviruses. The CoV host spike 
proteins which were compared with SARS-CoV-2 
(QHD43416.1) are: infectious bronchitis virus (IBV) 
(ADR51590.1), HCoV-229E (AII82124.1), 
transmissible gastroenteritis virus (TGEV) 
(AAQ02624.1), feline infectious peritonitis virus 
(FIPV) (AZH81408.1), porcine epidemic diarrhea 
virus (PEDV) (AKP16765.2), equine coronavirus 
(BAJ52885.1), murine hepatitis virus (MHV) 
(BAA11889.1), bovine coronavirus (CCE89341.1), 
pangolin coronavirus (QIQ54048.1), bat 
coronavirus (AWV67072.1). Their nucleotide and S 
gene protein sequences were pooled using NCBI 
resource tools while analysis was done using 
EMBOSS needle, clustal W2 and clustal omega 
respectively. 

Homology and phylogeny analysis of the  
S-protein genes in candidate zoonotic viruses: the 
identified spike gene protein sequences of animal 

coronaviruses were retrieved from submitted 
protein entries in NCBI database, homology 
analysis of the sequences was compared using 
clustal omega, EMBOSS needle while phylogenetic 
trees was constructed using the neighbor-joining 
method by CLUSTAL X software. 

SARS-CoV-2 sequence and phylogenetic analyses: 
in total, we culled the respective genomic and 
protein data of eight [8] 2019-nCoV/SARS-CoV-2 
clinical isolates from beta coronaviruses  
database in NCBI and these are: [1] MN908947; 
QHD43415.1 (China-Wuhan, December 2019), [2] 
LC522350;BBZ90167.1 (Philippines, January 
2020), [3] LC523807;BCA37476.1 (Philippines, 
January 2020), [4] LC523808;BCA37477.1 
(Philippines, January 2020); [5] 
MT308701;QIV64962.1 (Tunisia, April 2020) [6] 
MT308702;QIV64963.1 (USA, February 2020), [7] 
MT308703;QIV64975.1 (USA, April 2020) and [8] 
MT308704 (USA, April 2020). Whole-genome 
alignment and protein sequence identity 
calculation were performed using multiple 
sequence alignment in EMBL-EBI database with 
default parameters in clustal W2 and clustal 
omega respectively. 

Results     

Conserved domains in SARS-CoV-2: four out of 29 
domain hits generated from 2019-nCoV/SARS-
CoV-2 CDD query were selected based on the E-
value scores (Table 1). These are: non-structural 
protein (nsp 11), coronavirus RPolN terminus, non-
structural protein (nsp 13) and corona S2 super 
family. 

Protein phylogeny assembly of SARS-CoV-2 
isolates: protein sequence alignment analyses 
reveals the closest evolutionarily conservation 
between 2019-nCoV/SARS-CoV-2 and pangolin S 
protein with 95.6% similarity and 92.1% identity 
while 46.8% similarity and 31.2% identity was 
observed between SARS-CoV-2 and bat S protein 
(Figure 2). 
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Evolutionary patterns from SARS-CoV-2 isolates: 
increased level of evolutionary divergence was 
observed in submitted entries of the recent  
SARS-CoV-2 genomic data during time of the study 

(entries from December 2019 till 4th April) as seen 
in Figure 3 and Figure 4, while evolutionary 
patterns observed between Wuhan SARS-CoV-2 
data and other five geographical locations reveal 
trajectory of infection from reported source of 
outbreak. 

Discussion     

The region of 2019-nCoV domain which encodes 
nsp 11 spans from about 18046-19824bp. It was 
indicated in countering host innate antiviral 
response via inhibition of type I interferon (IFN) 
production using NendoU activity-dependent 
mechanisms in porcine reproductive syndrome 
viruses [16]. The nsp 11 is also associated with 
pathways such as programmed cell death evasion, 
mitogen-activated protein kinase signaling, 
histone-related, cell cycle and DNA replication and 
the ubiquitin-proteasome through RNA microarray 
analysis [17-20] and few nsp 11 inhibitors include 
papain-like proteinase (plPRO) and 3C-like main 
protease-3CLpro [21]. Coronavirus RNA-directed 
RNA polymerase (RdRp) terminus covers the  
N-terminal region of the coronavirus. It spans from 
about 13480-14538bp in SARS-CoV-2 and its 
interaction with nsp3 has been indicated in viral 
replication especially during early onset of 
infection [22]. The inhibitors of coronavirus RdRp 
include ATP inhibitors with mfScores lower than 
110 [21]. The nsp 13 is regarded as a highly 
conserved and multifunctional helicase unit and its 
spans from about 20662-21537 in the SARS-CoV-2 
isolate [23]. 

They are SARS-CoV helicases that are chiefly 
concerned with RNA processing, DNA replication, 
recombination and repair, transcription and 
translation [24]. A few potential inhibitors of 
nsp13 have been identified [25,26] and they act by 
interfering with its unwinding and ATPase 
activities. The coronavirus S2 super family spans 
from 23546-25372 and forms the characteristic 

'corona' after which the group is named. CoV 
diversity is reflected in the variable spike proteins 
(S proteins) and evolves into forms differing in 
receptor interactions and response to various 
environmental triggers of virus-cell membrane 
fusion [27]. The C-terminal (S2) domain directs 
ectodomain fusion of all CoVs spike proteins 
following receptor binding [28,29]. The level of 
interactions between the S protein and the virus 
receptor controls the host cell range [30]. A study 
showed a switch of species specificity via a mutant 
mouse hepatitis virus (MHV) construct which 
conferred horizontal gene transfer and ability to 
infect feline cells which were initially absent in 
wild MHV cells [30]. This was achieved via the 
substitution of the spike glycoprotein ectodomain. 
Another research [31] also indicated role of 
natural mutations in reactivity between the 
receptor binding domain of spike and cross-
neutralization between palm civet coronavirus and 
SARS-CoVs. 

Identification of the origin, natural host (s) and 
evolutionary pathway of viruses which causes 
pandemics is essential to understand molecular 
mechanism of their cross-species interactivity and 
implementation of a proper control measure [32]. 
Protein sequence alignment analyses reveals the 
closest evolutionarily conservation between  
2019-nCoV/SARS-CoV-2 and pangolin S protein 
with 95.6% similarity and 92.1% identity while 
46.8% similarity and 31.2% identity was observed 
between SARS-CoV-2 and bat S protein 
(supplementary data). This finding therefore 
agrees with reports indicating pangolin as a more 
recent ancestor of SARS-CoV-2 than bats [33,34] 
which could have arisen as a result of 
recombination (chimera) or interactions between 
pangolin-CoV-like virus with a bat-CoV-RaTG13-
like virus going by the homology and subclade of 
SARS-CoV-2 and pangolin S genes from bat S-gene 
seen in this study (Figure 2). Although, some 
computational analyses prediction of the 
improbability of direct binding between receptor 
binding domains (RBDs) in SARS-CoV-2 and ACE2 in 
humans suggests otherwise [35,36], studies have 
shown demonstrations of cross-species 
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interactivity through structural (in-silico), in-vitro 
and in-vivo mechanisms [31,37-39]. 

Series of in-vivo and in-vitro RNA recombination 
leading to vast genetic variability of positive strand 
RNA viruses has also been reported [13]. 
Domestication, consumption and wildlife activities 
which results in natural selection on a human or 
human-like ACE2 receptor [33,36] raises the 
possibility of SARS-CoV-2 emergence from 
pangolin. The receptor-binding domain (RBD) in 
the spike protein and functional polybasic (furin) 
cleavage site at the S1-S2 boundary [33,40] directs 
viral-host cell interactivity. Earlier reports of “no 
interactivity” between the S glycoprotein of bat-
CoV with human receptor ACE2 (which is essential 
for cross-species transmission) was founded on 
significantly low levels of sequence similarity (79 
to 80%) between bat-CoV and SARS-CoV in genes 
encoding the viral spike (S) glycoprotein [41]. 
However, the higher homology score (95.6%) in 
the receptor S-gene region obtained in this study 
suggests pangolin as the most likely intermediate 
host of SARS-CoV-2 than bats with 46.8% score 
(supplementary data). 

Possible host-viral genetic recombination [42] 
could also account for the increased level of 
evolutionary divergence observed in submitted 
entries of the recent SARS-CoV-2 genomic data 
during time of the study. Evolutionary patterns 
observed between Wuhan SARS-CoV-2 data and 
other five geographical locations reveal trajectory 
of infection from reported source of outbreak. 
Mobility patterns of both humans and animals 
alike are major factors influencing zoonotic 
disease outbreak amongst populations [43]. This 
amongst others, necessitates the strict travel bans, 
laws and confinement strategies adopted in 
different countries to curb its spread. Surprisingly, 
genomic and protein data from Philippines 
suggests otherwise (Figure 3 and Figure 4). Despite 
the limited data used for SARS-CoV-2 genomic 
profiling in this study, we found viral subtype 
divergence (considering distance metrics of  
SARS-CoV-2 with entries) (Figure 3 and Figure 4) 
suggesting a population-specific post translational 

modification which could have been influenced by 
genetic makeup. This is presumed based on 
subclades formed between protein sequence data 
from Philippines (BCA37476.1 and BCA37477.1) 
and another between China (QHD43415.1) and 
Philippines (BBZ90167.1) countries in the same 
continent. Also, empirical data points to genetic 
and epigenetic factors in SARS-CoVs evolution, 
incidence and infection rates amongst diverse 
populations and across different racial 
backgrounds [44]. 

Conclusion     

Viral cellular mechanisms are vital factors 
necessary for replication during infection. Hence, 
identification of domains of viral entry and evasion 
of antiviral mechanisms in host cells is essential for 
development of effective therapeutic measures. 
Conserved domains that are vital targets sites for 
inhibition of SARS-CoV-2 viral entry and replication 
in host cells found in this study include nsp11, nsp 
13, RdRp and corona super family while 
compounds such as RNA aptamers, ATP inhibitors, 
papain-like proteinase (plPRO) and 3C-like main 
protease-3CLpro etc. are viable indicated 
inhibitors of these domains; also, understanding 
the evolutionary pathway of the novel coronavirus 
transmission will not only help combat the current 
pandemic but assist in mutation tracking for 
identifying future zoonotic coronaviruses threats. 
The phylogenetic analyses of candidate zoonotic 
coronavirus (S) gene with SARS-CoV-2 revealed 
pangolin as the most recent ancestor which 
formed a sub-clade with bat S-gene suggesting 
interspecies recombination of CoV in bats and 
pangolins. Evolutionary pattern observed between 
SARS-CoV-2 genomic data from source of outbreak 
with recent entries analyzed in this study showed 
relative trajectory course of infection from source 
to other places except protein data from 
Philippines suggesting earlier existence of  
SARS-CoV-2 which should be further investigated. 
Also, genomic and protein data revealed racial 
viral subtype divergence and rapid rate of 
mutation despite the novelty of the outbreak. 
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Precise dating of viral subtype divergence will 
enable researchers correlate divergence with 
epidemics and pandemics via viral sequence 
sampling for proper time-scale measurements of 
zoonotic threats in human populations. Therefore, 
there is an urgent need for large scale analysis and 
profiling of genetic data of SARS-CoV-2 in affected 
populations especially in Africa where there is 
paucity of genomic SARS-CoV data for effective 
therapeutic measures. 

What is known about this topic 

• Cell machinery for SARS-CoV-2 viral entry is 
through the binding of its surface proteins 
to host cell receptors-angiotensin 
converting enzyme 2 (ACE 2) in epithelial 
cells in hosts; 

• Host factors accounts for a great deal of 
genome variability in viral recombinants 
which ranges from multi-resistance to 
evolutionary novelties; 

• The level of interactions between the S 
protein and the virus receptor controls the 
host cell range. 

What this study adds 

• Conserved domains for inhibition of SARS-
CoV-2 viral entry and replication in host 
cells found in this study include nsp11, nsp 
13, RdRp and corona super family; 

• Compounds such as RNA aptamers, ATP 
inhibitors, papain-like proteinase (plPRO) 
and 3C-like main protease-3CLpro etc. are 
viable indicated inhibitors of these 
domains; 

• The phylogenetic analyses of candidate 
zoonotic coronavirus (S) gene with SARS-
CoV-2 revealed pangolin as the most recent 
ancestor which formed a subclade with bat 
S-gene. 
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Figure 1: S, M, N and E regions of the MN908947 genomic data (NCBI database) 

 

Table 1: conserved domains in SARS-CoV-2 genomic data 

Domain hits Accession no Interval e-value 

NSP11 pfam06471 18046-19824 0e+00 

Corona_RPol_N pfam06478 13480-14538 0e+00 

NSP13 pfam06460 20662-21537 0e+00 

Corona (S2) super family Cl20218 23546-25372 0e+00 

NSP-non-structural protein; RPol- RNA polymerase 
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Figure 2: spike gene phylogeny of zoonotic CoVs with 2019 nCoV/SARS-CoV-2 

 

 

 

Figure 3: genomic data phylogeny of selected SARS-CoV-2 entries 

 

 

 

Figure 4: protein data phylogeny of selected SARS-CoV-2 entries 
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