Soy Chip Data: Examination for Anomalies

Mark S. Kaiser Department of Statistics Iowa State University March 2009

1 Background

This report contains a statistical examination of data from a study titled "Efficacy of Soy Pasta Chips for Weight Loss", conducted in 2004 at the Flemming Heart and Health Institute of Omaha, Nebraska. My understanding is that questions have been raised about the authenticity of the data produced by that study and, specifically, whether some of those data may have been fabricated. Statistical examination of a set of data cannot "prove" or "disprove" falsification of data records, but it can determine whether certain types of anomalies exist that would not be expected in data from most scientific studies. The goal of this exercise was to uncover any such anomalies that might exist in the data from this study.

The data used in this analysis were taken from a final report signed by the principle investigator on 7 April 2004 and provided to me via electronic transmission by Dr. Richard Flemming. The data contain records for 60 individuals that consist of values for height, initial weight, weight at two weeks, weight at four weeks, and body mass index at the same time points as weight. My examination of these data makes use of only the directly recorded variables of height and the three weight measurements. Also provided was a set of data I was told were entirely fabricated by a Mr. Hansen and these data are examined in the same manner as for the Flemming data.

2 Methods of Examination

Appropriate statistical methods for examination of data to detect potential fabrication depend on the characteristics of the study or studies of concern, including study design, objectives, and the analysis used to reach conclusions. Also important is the type of data fabrication suspected. The best methods for detection of one or a few fabricated data records differ from those more appropriate for the detection of wholesale fabrication of an entire or nearly an entire data set (e.g., Buyse *et al.* 1999). The study of concern here was of a very simple design with apparently self-selected subjects and lacking multiple medical centers or treatment groups, precluding the use of comparison of multiple centers or a suspect data set to an unsuspicious one (e.g., Al-Marzouki *et al.* 2009). The examination reported here focused on three aspects of the data records, *marginal and joint data structure*, *recorded data values*, and *influence on results*. The motivation for considering these aspects of the problem are described in this section.

Fabrication of data generally has a specific objective, either to influence the outcome of data analysis (e.g., show an effect of one or more treatments) or to avoid the effort needed to properly conduct data collection if a pattern seems clear from an analysis of some actual data. The former situation may result in alteration of one or more data records that have disproportionate influence on the outcome of statistical analysis for the study. Alternatively, if an entire data set is fabricated to exhibit an effect of some type (e.g., a difference in treatment group means), other characteristics of typical data sets that might also show such an effect (e.g., variance or covariance structure) are difficult to match. That is, most scientists cannot preserve higher-order structure in falsified data while achieving the desired first-order differences (Haldane 1948). The fabrication of data records as a matter of convenience may sometimes be detected based on either the number or distribution of digits in recorded data (e.g., Hill 2008, Walter and Richards 2001). For example, the presence of "extra" digits in recorded data may indicate that other, possibly legitimate, records have been averaged to produce the falsified data, or a fabricated data set may contain a preference for certain digits in either the first or terminal places. This latter phenomenon is related to the fact that the human mind is a poor random number generator.

While a comparable data set from an undisputed study is not readily available

for this analysis, it is possible to make use of theoretical probability distributions for comparison with the Flemming and Hansen data sets. Simulation of random values from theoretical probability distributions can be used to describe the expected behavior of actual data. Serious departures from such behavior are then a signal at something may be amiss in a given set of values. The Soy Chip study resulted in a four-dimensional multivariate observation for each subject, height, weight 0, weight 1, and weight 2. Assuming (which can be reasonably verified for the Flemming data) that a multivariate normal distribution provides a good model for the marginal and joint data characteristics, simulated values from this distribution can be used to examine what might be expected in terms of recorded data values (e.g., terminal digits) and whether or not averaging results should appear in randomly generated data.

3 Marginal and Joint Data Structure

The first approach used in this exercise was to examine the marginal and joint data structures for the entire set of data. This examination might indicate the presence of records that were altered in a manner that failed to preserve the overall coherence (or general behavior) of the collection of data in a manner consistent with typical probabilistic rules. For example, if a number of records were falsified for a particular weight (e.g., weight2 at week 4) they might stand out as having a different relation with height than they did at an earlier stage (e.g., weight1 at week 2). If entire data records were falsified the relation among variables in those records (ht, wt0, wt1, wt2) may not follow the overall pattern of the set of data. In a sense, then, this examination is one of *data consistency*. An individual falsifying a few data records would need to take care that those records "fit" the general pattern in the entire data set. An individual falsifying the bulk of records or fabricating an entire data set would need to take care that those records were both biologically consistent and probabilistically consistent. Probabilistically consistent here means that there should exist some joint probability distribution that could have "generated" the observed data. While no theoretical probability distribution is "correct" in a real problem, real data tend to follow the patterns of data simulated from theoretical distributions and dictated by the rules of probability. Falsified data often fail to exhibit this same consistency (unless, of course, they were produced via simulation from theoretical probability distributions).

Basic summary statistics for the Flemming data set are presented in Table 1 and similar values for the Hansen data are presented in Table 2.

Variable	Min	Q1	Q2	Q3	Max	Mean	Variance
Height	60.50	63.94	66.00	68.44	76.00	66.32	10.439
Weight0	146.0	165.1	185.0	205.5	301.0	193.71	1409.587
Weight1	139.0	162.2	182.5	201.6	295.0	189.76	1370.250
Weight 2	128.5	159.5	179.0	199.0	293.0	186.41	1357.250

Table 1: Basic summary statistics for the Flemming data.

Variable	Min	Q1	Q2	Q3	Max	Mean	Variance
Height	60.00	64.38	69.00	71.00	75.00	68.02	18.334
Weight0	129.0	174.5	201.5	225.0	285.0	200.59	1398.563
Weight1	125.0	169.8	197.5	220.5	281.0	196.68	1380.898
Weight2	124.0	166.5	194.5	216.0	279.0	193.47	1403.165

Table 2: Basic summary statistics for the Hansen data.

The values in Table 1 and Table 2 are quite similar. The greatest difference in

summary statistics from these sets of values is that the range (maximum value minus minimum value) for weights in the Hansen data set are more constant than for the Flemming data set. These ranges are reported in Table 3. The greater consistency in range for the Hansen data may be indicative of a more systematic method of data production, but without the knowledge that these data are purportedly fabricated it would be difficult to reach that conclusion on the basis of the ranges given in Table 3.

	Range for Variable				
Data Set	Height	Weight0	Weight1	Weight2	
Flemming	15.5	155.0	156.0	164.5	
Hansen	15.0	156.0	156.0	155.0	

Table 3: Ranges for the Flemming and Hansen data sets.

Correlations among the variables of height, weight0, weight1 and weight2 are reported for the Flemming data in Table 4 and the Hansen data in Table 5. Again, these values are quite similar, actually remarkably so. There is little to suggest that either set of data are not internally consistent. Extremely high correlations (for which the values of correlations between weight0, weight1 and weight 2 would qualify) are sometimes taken as an indication of results "too good to be true" (e.g., Akhtar-Danesh and Dehghan-Kooshkghazi 2003). But that is a weak argument against either the Flemming or Hansen data sets in this case. The reason is a combination of the ranges for weight measurements in Table 3 and the physiological realities of how much weight an individual can gain or loose in a period of several weeks. Correlation is a measure of linear association between two variables and this measure is affected by the range of values considered. A wide range of initial values (e.g., a range of 155 lbs. in weight0 for comparison with weight1 or a range of 156 lbs in weight1 for a comparison with weight2), coupled with the biological reality that any individual is unlikely to loose or gain more than a small fraction of their initial value *relative to the initial range* indicates that high correlations are to be expected in this situation. Both the Flemming and the Hansen data are also consistent with the anticipation that weights observed at more distant time points (i.e., weight0 and weight2) should be less highly correlated than weights observed at less distant time points (i.e., weight0 and weight1).

	ht	t wt() wt1	L wt2
ht	1.0000000	0.5263469	0.5274059	0.5289093
wt0	0.5263469	1.0000000	0.9989028	0.9961254
wt1	0.5274059	0.9989028	1.0000000	0.9983947
wt2	0.5289093	0.9961254	0.9983947	1.0000000

Table 4: Correlations for the Flemming data.

htwt0wt1wt2ht1.00000000.58915420.59369490.5839262wt00.58915421.00000000.99900950.9965339wt10.59369490.99900951.00000000.9985730wt20.58392620.99653390.99857301.0000000

Table 5: Correlations for the Hansen data.

One caution is in order here concerning the marginal distributions of the variables height and initial weight (i.e., weight0). It may be tempting to compare the empirical distributions (as histograms, for example) of these variables in a given set of data to what is known about values for the national population as a whole. For example, if one looks at the distribution of weights for the population of males and females at large, one should anticipate seeing a bimodal distribution. In a study of 60 individuals chosen randomly from the overall population one might anticipate a similar distribution for observed values in the sample. However, in a set of 60 self-selected individuals, such as in the current situation, one **may not** anticipate that the empirical distribution of the sample will appear closely similar to the population distribution. The distribution of heights or initial weights in a self-selected sample from any population are just as likely to look dissimilar to the population distributions as they are to look similar to the population distributions. Histograms of height values for the Flemming and Hansen data are presented in Figure 1. Here, the distribution of heights from the Hansen data appears to have an excess of tall individuals, which would not be expected if the data corresponded to a random sample of the population of individuals in the United States. However, given that the values would not correspond to a random sample of individuals in the population, it would be misleading to claim that the empirical distribution in the lower panel of Figure 1 provides evidence of falsified data.

Scatterplots of weights at times 0, 1 and 2 against height are presented for the Flemming data in Figure 2 and for the Hansen data in Figure 3. The first thing to note here is the similarity of the three scatterplots for each set of data. This should be expected, again because of the total range of weights contained in the data sets and the physiological realities of how much weight can change for humans over a period of several weeks. It appears that one could pick out individuals on these plots and that is, in fact, true. What would be disturbing would be to find individuals with radically different positions on one or more of the three plots and that does not occur. One may also notice that there are more widely scattered points above the bulk of the data pattern than there are below, for both data sets. This is not necessarily to be unexpected, at least in the Flemming data, because the self-selected sample of participants were individuals who considered themselves overweight. Statistically, this data pattern suggests distributions of weight for given heights that are skew right rather than symmetric. That this same pattern is exhibited in the Hansen data suggests that the fabrication of the Hansen data set was undertaken in a way to preserve features of the Flemming data.

Overall, there is little in either of the sets of values examined to suggest that they could not be the result of studies with an absence of fabricated data. Both sets of values may be considered as *internally consistent*. At this point we would have no justification for suggesting that either set of data have been manipulated in a manner consistent with the falsification of data. Examination of data sets in the manner of this section is not a powerful approach for identification of anomalies for this situation because of the lack of a reference for comparison. The population as a whole will not serve this purpose because subjects in the Flemming study were not intended to be a random sample from the population, and we lack data from a comparable undisputed study for comparison as well. What we can say is that neither data set contains obvious glaring inconsistencies that would suggest fabrication of data.

4 Recorded Data Values

Any numerical data value consists of a sequence of digits. For example, the value of 156 for an initial weight in this study has the digits 1, 5 and 6, in that order. There are two common approaches for examination of recorded digits in data records – investigation of recorded values that contain "extra digits", and comparison of distributions of the values 0 through 9 in various places in the data (e.g., first digit or last digit). We consider these two approaches in turn.

4.1 Records with Extra Digits

The majority of the data contained in the Flemming data set are recorded to the nearest whole number (e.g., height to the nearest inch, weight to the nearest pound) but there are a number of records that contain extra digits of either 0.25, 0.5 or 0.75. Table 6 presents the frequencies of these extra digits for the four observed variables.

Extra Digits	Height	Weight0	Weight1	Weight2
0.25	5	0	0	0
0.50	9	11	9	3
0.75	4	0	0	0

Table 6: Frequency of extra digits in the Flemming data.

Data records with extra digits relative may indicate that other data records were averaged to produce the suspect record (e.g., Walter and Richards 2001). For example, if two records with weights of 174 and 177 are averaged the result is 175.5, and the extra digit is easily recorded by an individual falsifying data. Of course, the mere presence of extra digits in some records does not necessarily indicate the record was constructed, but in the absence of falsification it would be unusual for one (entire) record to be the average of two others, even more unusual for this to be true of two records, and so forth. In the Flemming (and Hansen) data there are four variables, giving rise to four possible places where data averaging may have occurred to produce false data. A computer function was written (see Appendix 1) which took each record with extra digits for height and compared values of the four variables to averages of all other unique pairs of records (of which there are 59(58)/2 = 1711). Each instance in which any of the variables in the "suspect" record with extra digits was found to correspond to the average of two other records was saved. Of the 18 suspect records in the Flemming data, pairs of other subjects were found such that the average of exactly one variable in those records matched the value in the suspect record in 17 cases. For 12 of the suspect records pairs of other subjects could be found that, when averaged, produced the values in the suspect record for exactly 2 variables. But for none of the suspect records was it possible to locate a pair of other subjects that when averaged produced 3 or all 4 of the variables in the suspect record. The results for suspect records having at least two variables equal to the average of other records are presented in Table 7. In this table, the column labeled "suspect" gives the subject number from the original data corresponding to a data record having extra digits for height. The columns labeled "other 1" and "other 2" give subject numbers from two other records that were found to average to the suspect record value for two or more of the variables. The column labeled "inflags" gives the number of variables (out of the 4 possible but at least 2) for which the two other records produced averages equal to what was reported for the suspect record, and the columns labeled "flag1" through "flag4" give the specific variables for which averages matched the value of the suspect record (flag1=height, flag2=weight0, flag3=weight1 and flag4=weight2).

There are several aspects of the results in Table 7 that are of interest.

- Note first that there are quite a few of the records with extra digits for height (12 out of 18 to be exact) that have at least two variables equal to the averages of two other records in the data set.
- 2. Curiously, many of the suspect records in Table 7 contain variables that have values equal to the average of more than one pair of other records (e.g., suspect record 1, 2, 6, 8).
- 3. The number of suspect records that have values equal to averages of other records seems more prevalent for weight variables than for the variable of

uspect	orner i	other z	III I ago	TTagi	TTagz	TTago	11ag4	
1	17	28	2	1	0	1	0	
1	17	33	2	0	1	1	0	
1	28	55	2	0	1	0	1	
1	34	36	2	0	1	1	0	
2	12	28	2	0	1	0	1	
2	27	30	2	0	0	1	1	
2	27	58	2	0	0	1	1	
6	24	48	2	0	1	1	0	
6	42	48	2	0	1	1	0	
8	6	10	2	0	1	1	0	
8	9	28	2	0	1	0	1	
8	38	48	2	0	1	1	0	
8	50	59	2	0	1	1	0	
10	34	55	2	1	0	0	1	
11	53	55	2	0	1	1	0	
13	25	40	2	0	1	0	1	
22	44	55	2	0	1	1	0	
26	17	29	2	0	0	1	1	
28	3	33	2	0	1	1	0	
28	27	56	2	0	0	1	1	
28	27	59	2	0	1	1	0	
28	41	60	2	0	0	1	1	
28	50	59	2	0	1	0	1	
28	53	58	2	1	0	0	1	
34	25	60	2	0	1	1	0	
34	26	39	2	0	1	1	0	
34	39	49	2	1	0	0	1	
35	12	43	2	1	0	1	0	
35	12	59	2	1	1	0	0	

suspect other1 other2 nflags flag1 flag2 flag3 flag4

height.

4. There are no suspect records that are are the same in total (i.e., for all four variables) to averages of other records. In fact, there does not appear to be a simple pattern for which variables are averages of other records. For example, subject numbers 17 and 28 as well as subject numbers 17 and 33 average to the value of weight1 for subject number 1. Subject numbers 17 and 28 also average to the height value for subject 1, but subject numbers 17 and 33 do not, while subject numbers 17 and 33 average to the value of weight1 for subject 1, but subject numbers 17 and 33 do not, while subject numbers 17 and 33 average to the value of weight1 for subject 1, but subject numbers 17 and 33 do not, while subject numbers 17 and 33 average to the value of weight0 for subject 1 but subject numbers 17 and 28 do not.

Overall, the results of Table 7 indicate that, if the suspect records with extra digits for height in the Flemming data were constructed using a process of averaging other data records, this was done according to some complex system that is difficult to uncover. For example, subject 1 had matches (i.e., flags) that involved subject numbers 17, 28, 33, 55, 34 and 36. The record for subject 1 was not a match for the average of any 3 of these other records (of which there are 20), any 4 of these records (of which there are 15), any 5 of these records (of which there are 6) or all 6 of the records. The number of instances in which some variables in the records for which height contained extra digits turn out to be equal to averages of other records is, however, curious.

To examine whether or not the phenomena of Table 7 should be considered "out of the ordinary", I compared the results given in that table with data generated randomly from a coherent probabilistic structure. To accomplish this, 60 records were simulated from a four-dimensional multivariate normal distribution with means, variances, and covariances equal to the realized values from the Flemming data set. This data set, then, was simulated to match the marginal and joint data structures of the Flemming data set, but to be a case in which other aspects of the data followed a typical probabilistic structure difficult for humans to duplicate if asked to purposely falsify data (this entire simulated data set is contained in Appendix 2). The four variables in the simulated data will be called height, weight0, weight1 and weight2, in analogy with the actual problem. Each simulated record was then rounded to the nearest whole number. Following the frequencies of Table 6, 18 values for the variable height were randomly selected to have an extra digit added to their values; to 5 records the value of 0.25 was added, to 9 records the value of 0.50 was added, and to 4 records the value of 0.75 was added. In addition, 11 records were randomly selected to have a value of 0.50 added to weight0, another 9 records randomly selected to have a value of 0.50 added to weight1, and 3 records were randomly selected to have a value of 0.50 added to weight2. Running these simulated data through the same computer function used to produce Table 7 from the Flemming data gave the results presented in Table 8.

Although there is a minor difference between the values of Table 8 and those from the Flemming data of Table 7 (i.e., 7 of the 18 "suspect" records in the simulated data matched averages of other records in 2 or more variables, while 12 of 18 did for the Flemming data) the patterns are remarkably similar. In fact, the second, third, and fourth characteristics of the data in Table 7 listed previously, which may have seemed suspicious, were reproduced nearly identically in the simulated data results of Table 8.

Neither Table 7 nor Table 8 report the number of "suspicious" records matching averages in only 1 of the four variables. A table of frequencies for the number of suspicious records (out of 18 for both the Flemming and simulated data) that had 1, 2, 3, or 4 of the variables height, weight0, weight1, and weight2 matching averages of pairs of other data records is presented in Table 9. An ordinary Chi-squared test of differences for these frequencies is not appropriate here as the entries in Table 9 are not independent (i.e., a given suspicious data record could have matches with multiple pairs of other records, some pairs matching 1 of the variables and

25	16	58	2	0	1	1	0
33	11	58	2	1	1	0	0
34	15	57	2	0	1	1	0
34	17	57	2	1	1	0	0
34	49	58	2	0	1	0	1
39	1	50	3	0	1	1	1
39	2	57	2	0	1	1	0
39	32	35	2	0	0	1	1
42	5	24	2	0	1	1	0
42	22	35	2	0	0	1	1
42	28	49	2	0	1	0	1
42	37	38	2	0	0	1	1
50	1	30	2	0	1	0	1
59	25	34	2	0	1	0	1

suspect other1 other2 nflags flag1 flag2 flag3 flag4

Table 8: Data records in a simulated data set with heights recorded with extra digits for which variables were found to equal averages from two other records.

other pairs matching 2 of the four variables). In addition, only one simulated data set is presented and other simulated data sets would vary from this one to some degree. The point of Table 9, however, is that it does not appear that the Flemming data are at all unusual compared to what might result from a completely random probabilistic mechanism with the same marginal and joint data characteristics. The only conclusion that seems plausible is that the patterns exhibited in the Flemming data and reported in Table 7 are entirely in concert with what might occur from a completely probabilistic structure matched to the marginal and joint structures of those data.

	No.	of V	/aria	ables
Data Set	1	2	3	4
Flemming	17	12	0	0
Simulated	14	7	1	0
Hansen	7	4	0	0

Table 9: Frequency of matches for "suspicious" data records with averages of other pairs of records for the Flemming, Hansen, and simulated data sets.

It may also be of interest to examine the purportedly falsified Hansen data in the same manner as presented in Table 7 for the Flemming data and Table 8 for the simulated data. In these data, 7 records for "height" contain an extra digit of 0.50. Of these 7 records all 7 matched averages of other pairs of data records for 1 of the four variables, and 4 matched averages for 2 of the four variables, as indicated in the final row of Table 9. Thus, the Hansen data seem to follow the same pattern exhibited by both the Flemming and simulated data. It is not clear what exactly should be made of this, other than that the Hansen data appear to have much the same behavior as the Flemming data with regard to averaging, and both have behavior similar to randomly simulated data as well.

4.2 Distributions of Digits

There exist demonstrated distributions for the frequencies with which different digits (0 through 9) appear in data from various sources. None of these is applicable to the current situation, and this subsection is included to indicate why this is so. There is a result known as *Benford's law* that indicates the relative frequencies of leading digits in data should follow an approximate logarithmic distribution (e.g., Buyse *et al.* 1999, Hill 2008). This approximation often applies to financial data and other data consisting of an aggregation of various sources but does not typically apply to scientific data from a single data source (e.g., Hill 2008). In fact, a proof that Benford's law corresponds to a coherent probabilistic structure made use of random digits selected from random distributions (Hill 1996), a context that does not apply to most scientific investigations. The emphasis put on Benford's law by, for exampled, Buyse *et al.* 1999 seems misplaced, except perhaps in the examination of financial records for medical facilities.

The other use of distributions of digits in data to detect anomalies rest on the assumption that recorded data values may contain meaningful and nonmeaningful digits. The leading (first) digits of data values are often meaningful in indicating the magnitude of responses. The trailing (last) digit or digits are often nonmeaningful in this regard. For example, in a weight difference of 190.3 and 185.6 pounds, the first three digits of 190 and 185 are more meaningful than are the trailing decimal digits of 3 and 6. It is often assumed then that the meaningless digits should follow a uniform distribution on the discrete integer values from 0 to 9. Because the human mind appears to be a poor random number generator, fabricated data may often show a distribution of meaningless digits substantially different from a uniform distribution (e.g., Walter and Richards 2001). But, as pointed out by O'Kelly (2004), data with non-meaningful trailing digits are relatively unusual in most clinical trials, and that is the case here except for perhaps the data records with extra recorded digits, which

have already been examined in the previous subsection.

Nevertheless, in order to demonstrate what an examination of trailing digits would suggest about the three data sets currently under investigation (the Flemming data, the Hansen data, and the simulated data) I wrote a computer function to give the frequency of final digits (as whole numbers – data records containing extra digits first had those digits removed) for each of the variables of height, weight0, weight1, and weight2, and to test the resultant empirical distributions against a theoretical uniform distribution. The results for the Flemming data are presented in Tables 10 and 11.

Digit	ht	wt0	wt1	wt2
0	6	8	7	8
1	5	4	2	5
2	7	4	3	5
3	6	5	6	6
4	4	7	8	6
5	8	6	7	9
6	7	4	9	3
7	6	5	7	7
8	6	10	4	5
9	5	7	7	6

Table 10: Observed frequencies of final digits in the Flemming data.

Under an assumption that the relative frequencies of final digits (0 through 9) should follow a uniform distribution, the expected frequency for each digit is, with 60 observations 60/10 = 6.0. Standard Chi-squared tests of goodness of fit for such a uniform distribution to the values in Table 10 yields the results of Table 11. Clearly, none of the variables contain distributions of final digits coming even close to having

Variable	Test Statistic	p-value
Height	2.00	0.9915
Weight0	6.00	0.7399
Weight1	7.67	0.5680
Weight2	4.33	0.8881

evidence of departure from a uniform distribution.

Table 11: Test statistics and associated p-values for testing that the frequencies of final digits in the Flemming data differ from a uniform distribution.

Repeating this exercise with the data simulated from a multivariate normal distribution yields the observed frequencies of Table 12 and the associated test statistics and p-values of Table 13. These simulated data, as they should, also offer no evidence of a departure from a uniform distribution of final digits for any of the four variables.

Finally, conducting the procedure once again for the Hansen data produces the observed frequencies of Table 14 and the associated test statistics and p-values of Table 15. In this case, it would appear that the final digits of 0 and 5 appear with sufficiently greater frequency than expected (in combination – neither frequency would be sufficient by itself) than other digits to result in evidence that for the variable of weight0 that final digits differ substantially from what would be expected under a uniform distribution. Whether this is, or is not, truly meaningful could be a matter of debate. No such evidence is present for the other three variables of height, weight1 or weight2. While this is certainly a curious feature of the Hansen data, I would be reluctant to attach too much meaning to this result if I had not been informed that the Hansen data were fabricated. This one lone test statistic, in the face of internal consistency as demonstrated in Section 3 and consistency with the averaging property of Section 4, would seem scant evidence on which to base a

Digit	ht	wt0	wt1	wt2
0	5	2	7	7
1	6	12	4	4
2	5	7	7	9
3	6	5	4	3
4	4	4	5	11
5	8	6	5	5
6	9	5	8	8
7	8	7	8	8
8	4	5	7	3
9	5	7	5	2

Table 12: Observed frequencies of final digits in the simulated data.

Variable	Test Statistic	p-value
Height	4.67	0.8623
Weight0	10.33	0.3242
Weight1	3.67	0.9320
Weight2	13.67	0.1345

Table 13: Test statistics and associated p-values for testing that the frequencies of final digits in the simulated data differ from a uniform distribution.

declaration of falsification. While certainly curious as compared to the results for the Flemming and simulated data sets, it seems one would need to be "reaching for straws" to conclude that this offers real evidence that the Hansen data have been falsified.

The upshot of this subsection is that, in the first place, the examination of any

Digit	ht	wt0	wt1	wt2
0	9	13	4	9
1	7	2	4	8
2	9	4	7	8
3	6	10	7	7
4	7	2	6	3
5	6	13	10	6
6	3	1	5	4
7	2	6	5	2
8	4	7	5	6
9	7	2	7	7

Table 14: Observed frequencies of final digits in the Hansen data.

Variable	Test Statistic	p-value
Height	8.33	0.5009
Weight0	32.00	0.0002
Weight1	5.00	0.8343
Weight2	8.00	0.5341

Table 15: Test statistics and associated p-values for testing that the frequencies of final digits in the Hansen data differ from a uniform distribution.

of the data sets (Flemming, Hansen, or simulated) for assumed distributions of digit values in either leading or trailing places could prove problematic on theoretical grounds. There is no solid reason to assume that any of these data sets (aside from the simulated data) should exhibit any particular distribution of digits in any order, other perhaps than that weights should not have leading digits less than 1 for overweight individuals (i.e., less than 100 pounds) and would be unlikely to have leading digits greater than 3, even for a sample of offensive linemen from the national football league. That the trailing digits of the Hansen data set appear to have some departure from a hypothesized uniform distribution for the variable weight certainly is of interest, but also is certainly not definitive in offering evidence of falsification.

5 Could the Flemming Data Be Simulated?

The agreement of the Flemming data with values simulated from a multivariate normal distribution in terms of the averaging phenomena discussed in section 4.1, and the distribution of trailing digits in Section 4.2, raises the question of whether the data could have been produced wholesale (i.e., in entirety) from the use of a random number generator. The most likely candidate for such simulation would be a multivariate normal distribution with marginal and joint characteristics equal to the means, variances, and covariances reported for the Flemming data and described in Section 3 of this report. Given a moderate amount of statistical sophistication, anyone could produce such a data set. That this is unlikely to be the case in the current situation is evidenced by the failure of marginal distributions of weight, weight1, and weight2 to follow univariate normal distributions. A known property of multivariate normal distributions is that the marginal distributions corresponding to individual variables are univariate normal in form. Figure 4 presents histograms of the marginal distributions of weight for the simulated data set in the upper panel and the Flemming data set in the lower panel. The simulated data (upper panel) exhibit a distribution consistent with a normal theoretical distribution, which they should. The Flemming data (lower panel) exhibit a distinct skew right distribution, consistent with the observation of the scatterplots of weight versus height in Figure 2 (see Section 3 of this report). Is it possible to simulate data that have the characteristics of the Flemming data set? The answer is yes, it is possible, but doing so would require the ability to preserve means, variances, and correlations as described in Section 3 of this report, preserve the averaging property described in Section 4 of this report, **and** produce the difference in marginal distribution of weights at time 0 given in Figure 4. There exist ways to achieve all of this but they require a relatively high level of statistical knowledge, including the time and ability to write computer functions for tasks that are not readily available in pre-packaged routines.

6 Influence on Results

Falsification of data often has the objective of producing certain results in a data analysis. Quantification of the *influence* of each observation on the resultant analysis can then sometimes highlight one or a group of observations that played a large role in determining the outcome and conclusions of a study. While not in any manner evidence of falsified values by themselves, the occurrence of high influences can suggest cases worthy of additional examination. In the report on results of the Flemming study provided to me, the analysis consisted of two paired t-tests, one conducted on the difference in weight 0 and weight 1 values and the other conducted on the differences in weight1 and weight2 values. To examine the influence of recorded data values on these tests I simply deleted observations one at a time from the data, recomputed the test statistic without that value, and took the difference (absolute value) of that deleted-case statistic with the test statistic computed using the entire data set. This value then provides an indication of the influence of individual observations on the test conducted with the entire set of values. A summary of the influence values produced using the Flemming, Hansen, and simulated data for the comparison of weight0 and weight1 values is presented in Table 16, and the same is

Data Set	Min	Q1	Q2	Q3	Max
Flemming	0.0223	0.1758	0.2461	0.3079	2.8390
Hansen	0.0042	0.1883	0.3102	0.3133	2.4840
Simulated	0.0211	0.1309	0.2784	0.3265	0.9403

reported for the comparison of weight1 and weight2 values in Table 17.

Table 16: Summary of influence values for comparison of weight0 and weight1 records.

Data Set	Min	Q1	Q2	Q3	Max
Flemming	0.0111	0.1564	0.1833	0.2376	1.306
Hansen	0.0631	0.1347	0.1928	0.2400	0.9118
Simulated	0.062	0.1794	0.2491	0.2818	0.5538

Table 17: Summary of influence values for comparison of weight1 and weight2 records.

The most notable feature of both Table 16 and Table 17 is the extreme distance between the third quartile (or 75%—tile, denoted Q3) of influence values and the maximum influence value for the Flemming data in both Table 16 and Table 17, and the Hansen data, at least in Table 16. Stem and leaf plots demonstrate that this is due to only one extreme value that is hugely separated from the reamainder of the data. For example, the influence values for the Flemming data of Table 16 have the following stem-and-leaf plot: The decimal point is at the |

The data record that corresponds to the single observation with influence value 2.8 (which is just over 9 times larger than the next larges value) corresponds to subject 52 having height= 66, weight0= 186, weight1= 189 and weight2= 192. This subject gained weight between each weighing. The result is that, while highly influential relative to any of the other data records, the results for this subject decreased the size of the test statistic and hence the significance of the overall findings of the study. If this record was falsified the only reasonable objective would have been to purposely introduce one outlier into the data to make it look more "real", not to produce a desired result in the analysis of the study. This same observation is also the one extreme influence value for the Flemming data from Table 17.

Curiously, the Hansen data also contain exactly one such record, for what would be subject 45 in those data, with values height= 72, weight0= 275, weight1= 277 and weight2= 279. I surmise at this point that the Hansen data were not fabricated from scratch but, rather, took the Flemming data as a template to which various modifications were made in a haphazard but more-or-less "symmetric" manner. This would explain the close correspondence between marginal and joint data distributions for the Flemming and Hansen data and the reason the Hansen data appear internally consistent (see Section 3). If those modifications were made haphazardly (i.e., by simply switching records and writing down different trailing digits in a seemingly haphazard manner) then this would also explain the trailing digit preference for weight0 seen in the Hansen data although, again, I hesitate to make too much of this occurrence.

7 Conclusions

As stated in the opening paragraph of this report, a statistical examination of data cannot definitively prove or disprove the falsification of data records. The analysis conducted in this report, however, does allow the following conclusions to be comfortably reached.

- 1. If the Flemming data were falsified it would appear that they were fabricated in a nearly wholesale fashion, that is, more-or-less in total. These data are internally consistent, consistent with the behavior of values simulated from a theoretical probability distribution, and there is only one data record with undue influence on the results of the study (and this influence was in the "wrong" direction).
- 2. Because of the properties listed in conclusion 1 and, in particular, the averaging behavior described in Section 4 that the Flemming data shared with simulated data, the most likely mechanism for fabrication in this study must be considered simulation from some theoretical probability model.
- 3. Because of the multivariate nature of the four recorded data values for each subject, maintaining internal consistency would require, or at least strongly suggest, that a multivariate probability distribution would need to have been employed to simulate data values. The candidate most readily available to

non-statisticians (and even to statisticians without extensive experience in the construction of multivariate distributions from other probability structures) is the multivariate normal distribution.

- 4. The marginal moments (means, variances) and joint moments (covariance or correlation) of the Flemming data could easily be maintained through simulation from a multivariate normal distribution. However, the skew shape of marginal weight distributions (e.g., Figure 4) could not.
- 5. Combining items 1 through 4 immediately above suggests that, if the Flemming data were fabricated, the procedure used to arrive at the reported values was necessarily complex, requiring considerable statistical expertise and time to conduct. If it were supposed that the most likely motivation for data fabrication in this situation was to save time and effort relative to actually performing the observational process, this would seem at odds with what would have been needed for fabrication of the data.
- 6. Finally, the Hansen data represent an interesting construction if they were produced from scratch, but much less so if they were produced through modification of the Flemming data. If they were produced from scratch they achieved remarkable success in preserving marginal and joint data structure and relative evenness in influence (either through chance or design). If they were produced through modification of the Flemming they simply borrowed these properties from values that already possessed them. My suspicion is that these values were obtained by either modifying the Flemming data or, at the very least, using those data as a template for construction. The one property expected of actual data that could not be entirely maintained in the Hansen data was a uniform distribution of trailing digits in recorded values, although whether this is a valid criterion for the current situation is not entirely clear,

as explained in Section 4.2.

Overall, there is simply no data-driven evidence that the Flemming data set is other than would be expected under a legitimate study. While there are several aspects of the Hansen data set that might cause concern, there is no definitive indication that these data were fabricated either, absent the knowledge that this was the case. This would not be unexpected if the Hansen data were patterned after the Flemming data, but if the Hansen data were fabricated from scratch they should be preserved as a case study against which to test statistical methods of unusual patterns in falsified data.

8 Literature Cited

- Akhtar-Danesh, N. and Dehghan-Kooshkghazi, M. (2003), How does correlation structure differ between real and fabricated data-sets? *BioMed Central Medical Research Methodology* 3, 18-26. Al-Marzouki, S., Evans, S., Marshall, T. and Roberts, I. (2005), *British Medical Journal* 331, 267-270.
- Buyse, M., George, S.L., Evans, S., Geller, N.L., Ranstam, J., Scherrer, B., Lesafre,
 E., Murray, G., Edler, L., Hutton, J., Colton, T., Lachenbruch, P. and Verma,
 B.L. (1999), The role of biostatistics in the prevention, detection and treatment
 of fraud in clinical trials. *Statistics in Medicine* 18, 3435-3451.
- Hill, T.P. (1998), The first digit phenomenon. American Scientist 86, 358-363.
- Hill, T.P. (1996), A statistical derivation of the significant-digit law. Statistics in Science 10, 354-363. Mosimann, J.E. and Ratnaparkhi, M.V. (1996), Uniform occurrence of digits for folded and mixture distributions on finite intervals. Communications in Statistics – Simulation and Computation 25, 481-506.
- O'Kelly, M. (2004), Using statistical techniques to detect fraud: a test case. *Pharmaceutical Statistics* **3**, 237-246.

Walter, C.F. and Richards III, E.P. (2001), Using data digits to identify fabricated data. IEEE Engineering in Medicine and Biology xx, 96-100.

Figures

Figure 1: Histograms of height values from the Flemming data (top) and Hansen data (bottom).

Figure 2: Scatterplots of weights against heights for the Flemming data.

Figure 3: Scatterplots of weights against heights for the Hansen data.

Figure 4: Histograms of weight at time 0 for the simulated data set (upper panel) and the Flemming data set (lower panel).

Appendix 1: R Functions Used in the Analysis of the Report.

1. Simulation of Values from a Multivariate Normal Distribution.

```
randdat<-function(muvect,Sigmat,n){</pre>
# requires package bayesurv
#
rawdat<-rMVNorm(n,muvect,Sigmat)</pre>
roundat<-round(rawdat,0)</pre>
orig<-1:60
ind1<-sample(orig,5)</pre>
ind2<-sample(orig[-ind1],9)</pre>
ind3<-sample(orig[-c(ind1,ind2)],4)</pre>
roundat[ind1,1]<-roundat[ind1,1]+0.25</pre>
roundat[ind2,1]<-roundat[ind2,1]+0.5</pre>
roundat[ind3,1]<-roundat[ind3,1]+0.75</pre>
ind11<-sample(orig,11)</pre>
roundat[ind11,2]<-roundat[ind11,2]+0.5</pre>
ind21<-sample(orig,9)</pre>
roundat[ind21,3] <- roundat[ind21,3] +0.5
ind31<-sample(orig,3)</pre>
roundat[ind31,4]<-roundat[ind31,4]+0.5</pre>
roundat<-cbind(1:n,roundat)</pre>
dat<-as.data.frame(roundat)</pre>
names(dat)<-c("subject", "ht", "wt0", "wt1", "wt2")</pre>
return(dat)
}
```

2. Compare "suspect" data records to averages of other pairs.

```
checkavging<-function(dat,suspectno){</pre>
 suspect<-dat[dat$subject==suspectno,]</pre>
 rdat<-dat[-suspectno,]</pre>
 rn<-dim(rdat)[1]</pre>
 npairs<-rn*(rn-1)/2
 res<-c(rep(0,7))
 cnt1 < -0
 repeat{
  cnt1<-cnt1+1
  t1<-rdat[cnt1,]</pre>
  cnt2<-cnt1
  repeat{
   cnt2<-cnt2+1
   t2<-rdat[cnt2,]
   tsubs<-c(rdat$subject[cnt1],rdat$subject[cnt2])</pre>
#cat("tsubs: ",tsubs,fill=T)
   tavg<-0.5*(t1+t2)
   flag1<-(tavg$ht==suspect$ht)</pre>
   flag2<-(tavg$wt0==suspect$wt0)</pre>
   flag3<-(tavg$wt1==suspect$wt1)</pre>
   flag4<-(tavg$wt2==suspect$wt2)</pre>
   nflags<-flag1+flag2+flag3+flag4
   if(nflags>0){
   tres<-c(tsubs,nflags,flag1,flag2,flag3,flag4)</pre>
   res<-rbind(res,tres)}</pre>
   if(cnt2==rn) break
```

```
}
  if(cnt1==rn-1) break
  }
return(res)
}
#-----
summarycheckavg<-function(dat,suspectnos){</pre>
 sk<-length(suspectnos)</pre>
 res1<-NULL; res2<-NULL; res3<-NULL; res4<-NULL; res5<-NULL</pre>
 res6<-NULL; res7<-NULL; res8<-NULL</pre>
 cnt<-0
 repeat{
  cnt<-cnt+1
  tsus<-suspectnos[cnt]</pre>
  tres<-checkavging(dat,tsus)</pre>
  rs<-dim(tres)[1]</pre>
 if(is.null(rs)==FALSE){
  if(rs==1){
 res1<-c(res1,tsus)</pre>
  res2<-c(res2,tres[1])</pre>
  res3<-c(res3,tres[2])</pre>
  res4<-c(res4,tres[3])</pre>
  res5<-c(res5,tres[4])</pre>
  res6<-c(res6,tres[5])</pre>
  res7<-c(res7,tres[6])</pre>
  res8<-c(res8,tres[7])</pre>
  }
```

35

```
if(rs>1){
   cnt2 < -0
   repeat{
    cnt2<-cnt2+1
    ttres<-tres[cnt2,]</pre>
    res1<-c(res1,tsus)</pre>
    res2<-c(res2,ttres[1])</pre>
    res3<-c(res3,ttres[2])</pre>
    res4<-c(res4,ttres[3])</pre>
    res5<-c(res5,ttres[4])</pre>
    res6<-c(res6,ttres[5])</pre>
    res7<-c(res7,ttres[6])</pre>
    res8<-c(res8,ttres[7])</pre>
    if(cnt2==rs) break
    if(cnt==sk) break
 }
res<-data.frame(suspect=res1,other1=res2,other2=res3,nflags=res4,
                  flag1=res5,flag2=res6,flag3=res7,flag4=res8)
res2<-res[res$other1!=0,]</pre>
return(res2)
}
```

3. Examine distributions of trailing digits.

```
digitdist<-function(dat){
    ht<-dat$ht
    wt0<-dat$wt0</pre>
```

```
wt1<-dat$wt1
```

```
wt2<-dat$wt2
```

```
ht<-floor(ht)
```

```
wtO<-floor(wtO)
```

```
wt1<-floor(wt1)</pre>
```

```
wt2<-floor(wt2)
```

```
ldht<-ht-10*floor(ht/10)
```

```
ldwt0<-wt0-10*floor(wt0/10)</pre>
```

```
ldwt1<-wt1-10*floor(wt1/10)</pre>
```

```
ldwt2<-wt2-10*floor(wt2/10)</pre>
```

```
htfs<-NULL; wtOfs<-NULL; wt1fs<-NULL; wt2fs<-NULL</pre>
```

cnt<--1

```
repeat{
```

```
cnt<-cnt+1
```

```
thtf<-sum(ldht==cnt)
```

```
twtOf<-sum(ldwtO==cnt)</pre>
```

```
twt1f<-sum(ldwt1==cnt)</pre>
```

```
twt2f<-sum(ldwt2==cnt)</pre>
```

```
htfs<-c(htfs,thtf)
```

```
wtOfs<-c(wtOfs,twtOf)
```

```
wt1fs<-c(wt1fs,twt1f)
```

```
wt2fs<-c(wt2fs,twt2f)
```

```
if(cnt==9) break
```

```
}
```

```
res1<-data.frame(digit=0:9,ht=htfs,wt0=wt0fs,wt1=wt1fs,wt2=wt2fs)
tstht<-sum((res1$ht-6)^2/6)
tstwt0<-sum((res1$wt0-6)^2/6)</pre>
```

4. Compute influence values.

```
influencefctn<-function(dat){
  wt2<-dat$wt2
  wt1<-dat$wt1
  wtdif<-wt1-wt2
  mn<-mean(wtdif)
  v2<-var(wtdif)
  n<-length(wtdif)
  realt<-mn/sqrt(v2/n)
  subs<-NULL; infls<-NULL
  cnt<-0
  repeat{
    cnt<-cnt+1
    tsub<-dat$subject[cnt]</pre>
```

```
tvals<-wtdif[-cnt]
tt<-mean(tvals)/sqrt(var(tvals)/(n-1))
tinfl<-abs(tt-realt)
subs<-c(subs,tsub)
infls<-c(infls,tinfl)
if(cnt==n) break
}
res<-data.frame(subject=subs,influence=infls)
return(res)
}</pre>
```

Appendix 2: Data Sets Used in This Report.

1. The Flemming Data.

```
subject ht wt0 wt1 wt2
1 63.5 164 160 157
2 63.75 170 167 164
3 62.75 178 176 176
4 65 160 158.5 158
5 65 149.5 145 139.5
6 62.25 201.5 197.5 197.5
7 70 214.5 212 211
8 68.25 180 177 174
9 64 180 177 175
10 64.75 158.5 156.5 155
11 67.25 176.5 173.5 173
12 64 160 159 155
13 65.5 220 213 211
```

- 14 76 273 270 267
- 15 62 183.5 179 176
- 16 71 208 203.5 200
- 17 62.5 146 144 140
- 18 62.25 266.5 262 255
- 19 70 278.5 270.5 264
- 20 63.5 198.5 196.5 195
- 21 73.75 252 246 240
- 22 67.5 208 204.5 202
- 23 61.25 147.5 139 128.5
- 24 63 205 200 197
- 25 68 195 193 189
- 26 60.5 159 154 150
- 27 65 189 184 181
- 28 64.5 180 176 173
- 29 65 167 164 160
- 30 66 154 150 147
- 31 68 203 198.5 195
- 32 71 207 204 200
- 33 69 182 176 175
- 34 67.5 179 175 169
- 35 66.5 165.5 163 162
- 36 63 149 145 143
- 37 69 184 181 177
- 38 65 162 159 154
- 39 67 199 196 190
- 40 70 245 239 233

- 41 67 201 195 191
- 42 70 205 200 196
- 43 69 174 167 163
- 44 62.5 268 263 258
- 45 71 280 275 272
- 46 66 208 204 199
- 47 68 252 247 244
- 48 66 198 195 189
- 49 68 154 149 148
- 50 65 189 186 182
- 51 69 197 194 188
- 52 66 186 189 192
- 53 68 205 201 199
- 54 70 301 295 293
- 55 62 148 146 141
- 56 67 173 168 165
- 57 66 197 192 190
- 58 61 154 150 147
- 59 69 171 168 164
- 60 65 163 157 155
- 2. The Hansen Data.
 - subject ht wt0 wt1 wt2
 1 66 180 176 173
 2 62 163 160 157
 3 72 232 230 230
 4 68 175 173 172

- 5 69 180 175 169
- 6 73 255 251 250
- 7 64 175 173 172.5
- 8 65.5 162 159 156
- 9 70.5 225 222 219
- 10 69 180 177 175
- 11 72 203 200 199
- 12 70 180 179 175
- 13 71 245 238 235
- 14 65 207 204 201.5
- 15 66.5 200 196 193
- 16 63 157 153 150
- 17 74 195 193 189
- 18 67.5 285 281 278
- 19 62 225 217 211.5
- 20 67 165 163 162
- 21 72 240 234 230
- 22 62 175 172 170
- 23 68 173 165 156
- 24 71 253 248 245
- 25 61 157 155 151
- 26 63 177 172 168
- 27 73 240 235 232
- 28 70 206 202 199.5
- 29 75 223 219 214
- 30 69 170 166 157
- 31 75 248 242 238

- 32 60 148 145 141
- 33 69 184 179 178
- 34 64 162 158 152
- 35 74 205 202 201
- 36 68 175 171 169
- 37 64.5 158 155 151
- 38 71 204 201 196
- 39 69 213 209 203
- 40 75 260 254 248
- 41 70 220 214 210
- 42 62 158 153 150
- 43 65 151.5 147 143.5
- 44 61 253 248 248
- 45 72 275 277 279
- 46 74.5 260 256 251
- 47 66 230 225 222
- 48 69 223 220 215
- 49 64 129 125 124
- 50 60 159 156 153
- 51 71 213 209 203
- 52 70 207 205 204
- 53 63 178 174 172
- 54 68 278 272 270
- 55 73 210 208 203
- 56 72 191 185 182
- 57 69 212 207 205
- 58 70 203 199 196

59 70.5 177 174 170

60 61 148 143 141

3. The Simulated Data.

- 23 67 171 166 162
- 24 71 193 188 186
- 25 67.5 174 169.5 166.5
- 26 72.5 265.5 258 254
- 27 65 214 211 207
- 28 65 185 180.5 180
- 29 63 192.5 189 184
- 30 67 231 227.5 224
- 31 65 192 188 185.5
- 32 67 218 217 216
- 33 63.5 184 177 168
- 34 65.75 222 215 209.5
- 35 67 207 201 196
- 36 66.5 257 256 254
- 37 72 223 218 212
- 38 71 221 214 210
- 39 66.25 213 209 206
- 40 66 239.5 236 233
- 41 67 143 140 137
- 42 64.25 221 216 211
- 43 66 209 203 198
- 44 68.25 181.5 179 177
- 45 69.5 243 234 229
- 46 70 252 247 242
- 47 64 158 156 155
- 48 68 222 220.5 215
- 49 70.5 257 249 242

- 50 69.75 219 216 212
- 51 69.25 156.5 154 150
- 52 68 191 187 184
- 53 64.5 182 180 174
- 54 73.75 252 247 242
- 55 70 194.5 190 186
- 56 61 210.5 206 204
- 57 68.5 265 257 253
- 58 62 187 182 177
- 59 71.75 198 192 188
- 60 64 145 142 140