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1 Background

This report contains a statistical examination of data from a study titled “Efficacy

of Soy Pasta Chips for Weight Loss”, conducted in 2004 at the Flemming Heart and

Health Institute of Omaha, Nebraska. My understanding is that questions have been

raised about the authenticity of the data produced by that study and, specifically,

whether some of those data may have been fabricated. Statistical examination of

a set of data cannot “prove” or “disprove” falsification of data records, but it can

determine whether certain types of anomalies exist that would not be expected in

data from most scientific studies. The goal of this exercise was to uncover any such

anomalies that might exist in the data from this study.

The data used in this analysis were taken from a final report signed by the

principle investigator on 7 April 2004 and provided to me via electronic transmission

by Dr. Richard Flemming. The data contain records for 60 individuals that consist

of values for height, initial weight, weight at two weeks, weight at four weeks, and

body mass index at the same time points as weight. My examination of these data

makes use of only the directly recorded variables of height and the three weight

measurements. Also provided was a set of data I was told were entirely fabricated

by a Mr. Hansen and these data are examined in the same manner as for the

Flemming data.

2 Methods of Examination

Appropriate statistical methods for examination of data to detect potential fabri-

cation depend on the characteristics of the study or studies of concern, including

study design, objectives, and the analysis used to reach conclusions. Also impor-

tant is the type of data fabrication suspected. The best methods for detection of

one or a few fabricated data records differ from those more appropriate for the
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detection of wholesale fabrication of an entire or nearly an entire data set (e.g.,

Buyse et al. 1999). The study of concern here was of a very simple design with

apparently self-selected subjects and lacking multiple medical centers or treatment

groups, precluding the use of comparison of multiple centers or a suspect data set

to an unsuspicious one (e.g., Al-Marzouki et al. 2009). The examination reported

here focused on three aspects of the data records, marginal and joint data structure,

recorded data values, and influence on results. The motivation for considering these

aspects of the problem are described in this section.

Fabrication of data generally has a specific objective, either to influence the

outcome of data analysis (e.g., show an effect of one or more treatments) or to avoid

the effort needed to properly conduct data collection if a pattern seems clear from

an analysis of some actual data. The former situation may result in alteration of

one or more data records that have disproportionate influence on the outcome of

statistical analysis for the study. Alternatively, if an entire data set is fabricated

to exhibit an effect of some type (e.g., a difference in treatment group means),

other characteristics of typical data sets that might also show such an effect (e.g.,

variance or covariance structure) are difficult to match. That is, most scientists

cannot preserve higher-order structure in falsified data while achieving the desired

first-order differences (Haldane 1948). The fabrication of data records as a matter of

convenience may sometimes be detected based on either the number or distribution

of digits in recorded data (e.g., Hill 2008, Walter and Richards 2001). For example,

the presence of “extra” digits in recorded data may indicate that other, possibly

legitimate, records have been averaged to produce the falsified data, or a fabricated

data set may contain a preference for certain digits in either the first or terminal

places. This latter phenomenon is related to the fact that the human mind is a poor

random number generator.

While a comparable data set from an undisputed study is not readily available
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for this analysis, it is possible to make use of theoretical probability distributions

for comparison with the Flemming and Hansen data sets. Simulation of random

values from theoretical probability distributions can be used to describe the expected

behavior of actual data. Serious departures from such behavior are then a signal at

something may be amiss in a given set of values. The Soy Chip study resulted in a

four-dimensional multivariate observation for each subject, height, weight 0, weight

1, and weight 2. Assuming (which can be reasonably verified for the Flemming data)

that a multivariate normal distribution provides a good model for the marginal and

joint data characteristics, simulated values from this distribution can be used to

examine what might be expected in terms of recorded data values (e.g., terminal

digits) and whether or not averaging results should appear in randomly generated

data.

3 Marginal and Joint Data Structure

The first approach used in this exercise was to examine the marginal and joint data

structures for the entire set of data. This examination might indicate the presence

of records that were altered in a manner that failed to preserve the overall coherence

(or general behavior) of the collection of data in a manner consistent with typical

probabilistic rules. For example, if a number of records were falsified for a particular

weight (e.g., weight2 at week 4) they might stand out as having a different relation

with height than they did at an earlier stage (e.g., weight1 at week 2). If entire

data records were falsified the relation among variables in those records (ht, wt0,

wt1, wt2) may not follow the overall pattern of the set of data. In a sense, then,

this examination is one of data consistency. An individual falsifying a few data

records would need to take care that those records “fit” the general pattern in the

entire data set. An individual falsifying the bulk of records or fabricating an entire
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data set would need to take care that those records were both biologically consistent

and probabilistically consistent. Probabilistically consistent here means that there

should exist some joint probability distribution that could have “generated” the

observed data. While no theoretical probability distribution is “correct” in a real

problem, real data tend to follow the patterns of data simulated from theoretical

distributions and dictated by the rules of probability. Falsified data often fail to

exhibit this same consistency (unless, of course, they were produced via simulation

from theoretical probability distributions).

Basic summary statistics for the Flemming data set are presented in Table 1 and

similar values for the Hansen data are presented in Table 2.

Variable Min Q1 Q2 Q3 Max Mean Variance

Height 60.50 63.94 66.00 68.44 76.00 66.32 10.439

Weight0 146.0 165.1 185.0 205.5 301.0 193.71 1409.587

Weight1 139.0 162.2 182.5 201.6 295.0 189.76 1370.250

Weight 2 128.5 159.5 179.0 199.0 293.0 186.41 1357.250

Table 1: Basic summary statistics for the Flemming data.

Variable Min Q1 Q2 Q3 Max Mean Variance

Height 60.00 64.38 69.00 71.00 75.00 68.02 18.334

Weight0 129.0 174.5 201.5 225.0 285.0 200.59 1398.563

Weight1 125.0 169.8 197.5 220.5 281.0 196.68 1380.898

Weight2 124.0 166.5 194.5 216.0 279.0 193.47 1403.165

Table 2: Basic summary statistics for the Hansen data.

The values in Table 1 and Table 2 are quite similar. The greatest difference in
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summary statistics from these sets of values is that the range (maximum value minus

minimum value) for weights in the Hansen data set are more constant than for the

Flemming data set. These ranges are reported in Table 3. The greater consistency

in range for the Hansen data may be indicative of a more systematic method of data

production, but without the knowledge that these data are purportedly fabricated it

would be difficult to reach that conclusion on the basis of the ranges given in Table

3.

Range for Variable

Data Set Height Weight0 Weight1 Weight2

Flemming 15.5 155.0 156.0 164.5

Hansen 15.0 156.0 156.0 155.0

Table 3: Ranges for the Flemming and Hansen data sets.

Correlations among the variables of height, weight0, weight1 and weight2 are

reported for the Flemming data in Table 4 and the Hansen data in Table 5. Again,

these values are quite similar, actually remarkably so. There is little to suggest

that either set of data are not internally consistent. Extremely high correlations

(for which the values of correlations between weight0, weight1 and weight 2 would

qualify) are sometimes taken as an indication of results “too good to be true” (e.g.,

Akhtar-Danesh and Dehghan-Kooshkghazi 2003). But that is a weak argument

against either the Flemming or Hansen data sets in this case. The reason is a

combination of the ranges for weight measurements in Table 3 and the physiological

realities of how much weight an individual can gain or loose in a period of several

weeks. Correlation is a measure of linear association between two variables and this

measure is affected by the range of values considered. A wide range of initial values

(e.g., a range of 155 lbs. in weight0 for comparison with weight1 or a range of 156 lbs

in weight1 for a comparison with weight2), coupled with the biological reality that
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any individual is unlikely to loose or gain more than a small fraction of their initial

value relative to the initial range indicates that high correlations are to be expected

in this situation. Both the Flemming and the Hansen data are also consistent with

the anticipation that weights observed at more distant time points (i.e., weight0 and

weight2) should be less highly correlated than weights observed at less distant time

points (i.e., weight0 and weight1).

ht wt0 wt1 wt2

ht 1.0000000 0.5263469 0.5274059 0.5289093

wt0 0.5263469 1.0000000 0.9989028 0.9961254

wt1 0.5274059 0.9989028 1.0000000 0.9983947

wt2 0.5289093 0.9961254 0.9983947 1.0000000

Table 4: Correlations for the Flemming data.

ht wt0 wt1 wt2

ht 1.0000000 0.5891542 0.5936949 0.5839262

wt0 0.5891542 1.0000000 0.9990095 0.9965339

wt1 0.5936949 0.9990095 1.0000000 0.9985730

wt2 0.5839262 0.9965339 0.9985730 1.0000000

Table 5: Correlations for the Hansen data.

One caution is in order here concerning the marginal distributions of the vari-

ables height and initial weight (i.e., weight0). It may be tempting to compare the

empirical distributions (as histograms, for example) of these variables in a given set

of data to what is known about values for the national population as a whole. For

example, if one looks at the distribution of weights for the population of males and
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females at large, one should anticipate seeing a bimodal distribution. In a study

of 60 individuals chosen randomly from the overall population one might anticipate

a similar distribution for observed values in the sample. However, in a set of 60

self-selected individuals, such as in the current situation, one may not anticipate

that the empirical distribution of the sample will appear closely similar to the pop-

ulation distribution. The distribution of heights or initial weights in a self-selected

sample from any population are just as likely to look dissimilar to the population

distributions as they are to look similar to the population distributions. Histograms

of height values for the Flemming and Hansen data are presented in Figure 1. Here,

the distribution of heights from the Hansen data appears to have an excess of tall

individuals, which would not be expected if the data corresponded to a random sam-

ple of the population of individuals in the United States. However, given that the

values would not correspond to a random sample of individuals in the population,

it would be misleading to claim that the empirical distribution in the lower panel of

Figure 1 provides evidence of falsified data.

Scatterplots of weights at times 0, 1 and 2 against height are presented for the

Flemming data in Figure 2 and for the Hansen data in Figure 3. The first thing to

note here is the similarity of the three scatterplots for each set of data. This should

be expected, again because of the total range of weights contained in the data sets

and the physiological realities of how much weight can change for humans over a

period of several weeks. It appears that one could pick out individuals on these plots

and that is, in fact, true. What would be disturbing would be to find individuals with

radically different positions on one or more of the three plots and that does not occur.

One may also notice that there are more widely scattered points above the bulk of

the data pattern than there are below, for both data sets. This is not necessarily to

be unexpected, at least in the Flemming data, because the self-selected sample of

participants were individuals who considered themselves overweight. Statistically,
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this data pattern suggests distributions of weight for given heights that are skew

right rather than symmetric. That this same pattern is exhibited in the Hansen

data suggests that the fabrication of the Hansen data set was undertaken in a way

to preserve features of the Flemming data.

Overall, there is little in either of the sets of values examined to suggest that

they could not be the result of studies with an absence of fabricated data. Both

sets of values may be considered as internally consistent. At this point we would

have no justification for suggesting that either set of data have been manipulated

in a manner consistent with the falsification of data. Examination of data sets in

the manner of this section is not a powerful approach for identification of anomalies

for this situation because of the lack of a reference for comparison. The population

as a whole will not serve this purpose because subjects in the Flemming study

were not intended to be a random sample from the population, and we lack data

from a comparable undisputed study for comparison as well. What we can say is

that neither data set contains obvious glaring inconsistencies that would suggest

fabrication of data.

4 Recorded Data Values

Any numerical data value consists of a sequence of digits. For example, the value

of 156 for an initial weight in this study has the digits 1, 5 and 6, in that order.

There are two common approaches for examination of recorded digits in data records

– investigation of recorded values that contain “extra digits”, and comparison of

distributions of the values 0 through 9 in various places in the data (e.g., first digit

or last digit). We consider these two approaches in turn.
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4.1 Records with Extra Digits

The majority of the data contained in the Flemming data set are recorded to the

nearest whole number (e.g., height to the nearest inch, weight to the nearest pound)

but there are a number of records that contain extra digits of either 0.25, 0.5 or 0.75.

Table 6 presents the frequencies of these extra digits for the four observed variables.

Extra Digits Height Weight0 Weight1 Weight2

0.25 5 0 0 0

0.50 9 11 9 3

0.75 4 0 0 0

Table 6: Frequency of extra digits in the Flemming data.

Data records with extra digits relative may indicate that other data records

were averaged to produce the suspect record (e.g., Walter and Richards 2001). For

example, if two records with weights of 174 and 177 are averaged the result is 175.5,

and the extra digit is easily recorded by an individual falsifying data. Of course,

the mere presence of extra digits in some records does not necessarily indicate the

record was constructed, but in the absence of falsification it would be unusual for

one (entire) record to be the average of two others, even more unusual for this to

be true of two records, and so forth. In the Flemming (and Hansen) data there are

four variables, giving rise to four possible places where data averaging may have

occurred to produce false data. A computer function was written (see Appendix

1) which took each record with extra digits for height and compared values of the

four variables to averages of all other unique pairs of records (of which there are

59(58)/2 = 1711). Each instance in which any of the variables in the “suspect”

record with extra digits was found to correspond to the average of two other records
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was saved. Of the 18 suspect records in the Flemming data, pairs of other subjects

were found such that the average of exactly one variable in those records matched

the value in the suspect record in 17 cases. For 12 of the suspect records pairs

of other subjects could be found that, when averaged, produced the values in the

suspect record for exactly 2 variables. But for none of the suspect records was it

possible to locate a pair of other subjects that when averaged produced 3 or all 4 of

the variables in the suspect record. The results for suspect records having at least

two variables equal to the average of other records are presented in Table 7. In this

table, the column labeled “suspect” gives the subject number from the original data

corresponding to a data record having extra digits for height. The columns labeled

“other 1” and “other 2” give subject numbers from two other records that were found

to average to the suspect record value for two or more of the variables. The column

labeled “nflags” gives the number of variables (out of the 4 possible but at least 2)

for which the two other records produced averages equal to what was reported for

the suspect record, and the columns labeled “flag1” through “flag4” give the specific

variables for which averages matched the value of the suspect record (flag1=height,

flag2=weight0, flag3=weight1 and flag4=weight2).

There are several aspects of the results in Table 7 that are of interest.

1. Note first that there are quite a few of the records with extra digits for height

(12 out of 18 to be exact) that have at least two variables equal to the averages

of two other records in the data set.

2. Curiously, many of the suspect records in Table 7 contain variables that have

values equal to the average of more than one pair of other records (e.g., suspect

record 1, 2, 6, 8).

3. The number of suspect records that have values equal to averages of other

records seems more prevalent for weight variables than for the variable of
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suspect other1 other2 nflags flag1 flag2 flag3 flag4

1 17 28 2 1 0 1 0

1 17 33 2 0 1 1 0

1 28 55 2 0 1 0 1

1 34 36 2 0 1 1 0

2 12 28 2 0 1 0 1

2 27 30 2 0 0 1 1

2 27 58 2 0 0 1 1

6 24 48 2 0 1 1 0

6 42 48 2 0 1 1 0

8 6 10 2 0 1 1 0

8 9 28 2 0 1 0 1

8 38 48 2 0 1 1 0

8 50 59 2 0 1 1 0

10 34 55 2 1 0 0 1

11 53 55 2 0 1 1 0

13 25 40 2 0 1 0 1

22 44 55 2 0 1 1 0

26 17 29 2 0 0 1 1

28 3 33 2 0 1 1 0

28 27 56 2 0 0 1 1

28 27 59 2 0 1 1 0

28 41 60 2 0 0 1 1

28 50 59 2 0 1 0 1

28 53 58 2 1 0 0 1

34 25 60 2 0 1 1 0

34 26 39 2 0 1 1 0

34 39 49 2 1 0 0 1

35 12 43 2 1 0 1 0

35 12 59 2 1 1 0 0

Table 7: Data records in the Flemming data set with heights recorded with extra
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height.

4. There are no suspect records that are are the same in total (i.e., for all four

variables) to averages of other records. In fact, there does not appear to be a

simple pattern for which variables are averages of other records. For example,

subject numbers 17 and 28 as well as subject numbers 17 and 33 average to the

value of weight1 for subject number 1. Subject numbers 17 and 28 also average

to the height value for subject 1, but subject numbers 17 and 33 do not, while

subject numbers 17 and 33 average to the value of weight0 for subject 1 but

subject numbers 17 and 28 do not.

Overall, the results of Table 7 indicate that, if the suspect records with extra

digits for height in the Flemming data were constructed using a process of averaging

other data records, this was done according to some complex system that is difficult

to uncover. For example, subject 1 had matches (i.e., flags) that involved subject

numbers 17, 28, 33, 55, 34 and 36. The record for subject 1 was not a match for

the average of any 3 of these other records (of which there are 20), any 4 of these

records (of which there are 15), any 5 of these records (of which there are 6) or all 6

of the records. The number of instances in which some variables in the records for

which height contained extra digits turn out to be equal to averages of other records

is, however, curious.

To examine whether or not the phenomena of Table 7 should be considered

“out of the ordinary”, I compared the results given in that table with data gen-

erated randomly from a coherent probabilistic structure. To accomplish this, 60

records were simulated from a four-dimensional multivariate normal distribution

with means, variances, and covariances equal to the realized values from the Flem-

ming data set. This data set, then, was simulated to match the marginal and joint

data structures of the Flemming data set, but to be a case in which other aspects of

the data followed a typical probabilistic structure difficult for humans to duplicate
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if asked to purposely falsify data (this entire simulated data set is contained in Ap-

pendix 2). The four variables in the simulated data will be called height, weight0,

weight1 and weight2, in analogy with the actual problem. Each simulated record

was then rounded to the nearest whole number. Following the frequencies of Table

6, 18 values for the variable height were randomly selected to have an extra digit

added to their values; to 5 records the value of 0.25 was added, to 9 records the

value of 0.50 was added, and to 4 records the value of 0.75 was added. In addition,

11 records were randomly selected to have a value of 0.50 added to weight0, another

9 records randomly selected to have a value of 0.50 added to weight1, and 3 records

were randomly selected to have a value of 0.50 added to weight2. Running these

simulated data through the same computer function used to produce Table 7 from

the Flemming data gave the results presented in Table 8.

Although there is a minor difference between the values of Table 8 and those from

the Flemming data of Table 7 (i.e., 7 of the 18 “suspect” records in the simulated

data matched averages of other records in 2 or more variables, while 12 of 18 did for

the Flemming data) the patterns are remarkably similar. In fact, the second, third,

and fourth characteristics of the data in Table 7 listed previously, which may have

seemed suspicious, were reproduced nearly identically in the simulated data results

of Table 8.

Neither Table 7 nor Table 8 report the number of “suspicious” records matching

averages in only 1 of the four variables. A table of frequencies for the number of

suspicious records (out of 18 for both the Flemming and simulated data) that had 1,

2, 3, or 4 of the variables height, weight0, weight1, and weight2 matching averages

of pairs of other data records is presented in Table 9. An ordinary Chi-squared

test of differences for these frequencies is not appropriate here as the entries in

Table 9 are not independent (i.e., a given suspicious data record could have matches

with multiple pairs of other records, some pairs matching 1 of the variables and
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suspect other1 other2 nflags flag1 flag2 flag3 flag4

25 16 58 2 0 1 1 0

33 11 58 2 1 1 0 0

34 15 57 2 0 1 1 0

34 17 57 2 1 1 0 0

34 49 58 2 0 1 0 1

39 1 50 3 0 1 1 1

39 2 57 2 0 1 1 0

39 32 35 2 0 0 1 1

42 5 24 2 0 1 1 0

42 22 35 2 0 0 1 1

42 28 49 2 0 1 0 1

42 37 38 2 0 0 1 1

50 1 30 2 0 1 0 1

59 25 34 2 0 1 0 1

Table 8: Data records in a simulated data set with heights recorded with extra digits

for which variables were found to equal averages from two other records.
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other pairs matching 2 of the four variables). In addition, only one simulated data

set is presented and other simulated data sets would vary from this one to some

degree. The point of Table 9, however, is that it does not appear that the Flemming

data are at all unusual compared to what might result from a completely random

probabilistic mechanism with the same marginal and joint data characteristics. The

only conclusion that seems plausible is that the patterns exhibited in the Flemming

data and reported in Table 7 are entirely in concert with what might occur from a

completely probabilistic structure matched to the marginal and joint structures of

those data.

No. of Variables

Data Set 1 2 3 4

Flemming 17 12 0 0

Simulated 14 7 1 0

Hansen 7 4 0 0

Table 9: Frequency of matches for “suspicious” data records with averages of other

pairs of records for the Flemming, Hansen, and simulated data sets.

It may also be of interest to examine the purportedly falsified Hansen data in

the same manner as presented in Table 7 for the Flemming data and Table 8 for

the simulated data. In these data, 7 records for “height” contain an extra digit

of 0.50. Of these 7 records all 7 matched averages of other pairs of data records

for 1 of the four variables, and 4 matched averages for 2 of the four variables, as

indicated in the final row of Table 9. Thus, the Hansen data seem to follow the

same pattern exhibited by both the Flemming and simulated data. It is not clear

what exactly should be made of this, other than that the Hansen data appear to

have much the same behavior as the Flemming data with regard to averaging, and

both have behavior similar to randomly simulated data as well.
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4.2 Distributions of Digits

There exist demonstrated distributions for the frequencies with which different digits

(0 through 9) appear in data from various sources. None of these is applicable to

the current situation, and this subsection is included to indicate why this is so.

There is a result known as Benford’s law that indicates the relative frequencies of

leading digits in data should follow an approximate logarithmic distribution (e.g.,

Buyse et al. 1999, Hill 2008). This approximation often applies to financial data

and other data consisting of an aggregation of various sources but does not typically

apply to scientific data from a single data source (e.g., Hill 2008). In fact, a proof

that Benford’s law corresponds to a coherent probabilistic structure made use of

random digits selected from random distributions (Hill 1996), a context that does

not apply to most scientific investigations. The emphasis put on Benford’s law by,

for exampled, Buyse et al. 1999 seems misplaced, except perhaps in the examination

of financial records for medical facilities.

The other use of distributions of digits in data to detect anomalies rest on the

assumption that recorded data values may contain meaningful and nonmeaningful

digits. The leading (first) digits of data values are often meaningful in indicating the

magnitude of responses. The trailing (last) digit or digits are often nonmeaningful in

this regard. For example, in a weight difference of 190.3 and 185.6 pounds, the first

three digits of 190 and 185 are more meaningful than are the trailing decimal digits of

3 and 6. It is often assumed then that the meaningless digits should follow a uniform

distribution on the discrete integer values from 0 to 9. Because the human mind

appears to be a poor random number generator, fabricated data may often show a

distribution of meaningless digits substantially different from a uniform distribution

(e.g., Walter and Richards 2001). But, as pointed out by O’Kelly (2004), data with

non-meaningful trailing digits are relatively unusual in most clinical trials, and that

is the case here except for perhaps the data records with extra recorded digits, which
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have already been examined in the previous subsection.

Nevertheless, in order to demonstrate what an examination of trailing digits

would suggest about the three data sets currently under investigation (the Flemming

data, the Hansen data, and the simulated data) I wrote a computer function to give

the frequency of final digits (as whole numbers – data records containing extra digits

first had those digits removed) for each of the variables of height, weight0, weight1,

and weight2, and to test the resultant empirical distributions against a theoretical

uniform distribution. The results for the Flemming data are presented in Tables 10

and 11.

Digit ht wt0 wt1 wt2

0 6 8 7 8

1 5 4 2 5

2 7 4 3 5

3 6 5 6 6

4 4 7 8 6

5 8 6 7 9

6 7 4 9 3

7 6 5 7 7

8 6 10 4 5

9 5 7 7 6

Table 10: Observed frequencies of final digits in the Flemming data.

Under an assumption that the relative frequencies of final digits (0 through 9)

should follow a uniform distribution, the expected frequency for each digit is, with

60 observations 60/10 = 6.0. Standard Chi-squared tests of goodness of fit for such a

uniform distribution to the values in Table 10 yields the results of Table 11. Clearly,

none of the variables contain distributions of final digits coming even close to having
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evidence of departure from a uniform distribution.

Variable Test Statistic p−value

Height 2.00 0.9915

Weight0 6.00 0.7399

Weight1 7.67 0.5680

Weight2 4.33 0.8881

Table 11: Test statistics and associated p−values for testing that the frequencies of

final digits in the Flemming data differ from a uniform distribution.

Repeating this exercise with the data simulated from a multivariate normal dis-

tribution yields the observed frequencies of Table 12 and the associated test statistics

and p−values of Table 13. These simulated data, as they should, also offer no evi-

dence of a departure from a uniform distribution of final digits for any of the four

variables.

Finally, conducting the procedure once again for the Hansen data produces the

observed frequencies of Table 14 and the associated test statistics and p−values of

Table 15. In this case, it would appear that the final digits of 0 and 5 appear with

sufficiently greater frequency than expected (in combination – neither frequency

would be sufficient by itself) than other digits to result in evidence that for the

variable of weight0 that final digits differ substantially from what would be expected

under a uniform distribution. Whether this is, or is not, truly meaningful could be

a matter of debate. No such evidence is present for the other three variables of

height, weight1 or weight2. While this is certainly a curious feature of the Hansen

data, I would be reluctant to attach too much meaning to this result if I had not

been informed that the Hansen data were fabricated. This one lone test statistic, in

the face of internal consistency as demonstrated in Section 3 and consistency with

the averaging property of Section 4, would seem scant evidence on which to base a
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Digit ht wt0 wt1 wt2

0 5 2 7 7

1 6 12 4 4

2 5 7 7 9

3 6 5 4 3

4 4 4 5 11

5 8 6 5 5

6 9 5 8 8

7 8 7 8 8

8 4 5 7 3

9 5 7 5 2

Table 12: Observed frequencies of final digits in the simulated data.

Variable Test Statistic p−value

Height 4.67 0.8623

Weight0 10.33 0.3242

Weight1 3.67 0.9320

Weight2 13.67 0.1345

Table 13: Test statistics and associated p−values for testing that the frequencies of

final digits in the simulated data differ from a uniform distribution.

declaration of falsification. While certainly curious as compared to the results for

the Flemming and simulated data sets, it seems one would need to be “reaching for

straws” to conclude that this offers real evidence that the Hansen data have been

falsified.

The upshot of this subsection is that, in the first place, the examination of any
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Digit ht wt0 wt1 wt2

0 9 13 4 9

1 7 2 4 8

2 9 4 7 8

3 6 10 7 7

4 7 2 6 3

5 6 13 10 6

6 3 1 5 4

7 2 6 5 2

8 4 7 5 6

9 7 2 7 7

Table 14: Observed frequencies of final digits in the Hansen data.

Variable Test Statistic p−value

Height 8.33 0.5009

Weight0 32.00 0.0002

Weight1 5.00 0.8343

Weight2 8.00 0.5341

Table 15: Test statistics and associated p−values for testing that the frequencies of

final digits in the Hansen data differ from a uniform distribution.

of the data sets (Flemming, Hansen, or simulated) for assumed distributions of digit

values in either leading or trailing places could prove problematic on theoretical

grounds. There is no solid reason to assume that any of these data sets (aside

from the simulated data) should exhibit any particular distribution of digits in any

order, other perhaps than that weights should not have leading digits less than 1
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for overweight individuals (i.e., less than 100 pounds) and would be unlikely to

have leading digits greater than 3, even for a sample of offensive linemen from the

national football league. That the trailing digits of the Hansen data set appear

to have some departure from a hypothesized uniform distribution for the variable

weigth0 certainly is of interest, but also is certainly not definitive in offering evidence

of falsification.

5 Could the Flemming Data Be Simulated?

The agreement of the Flemming data with values simulated from a multivariate

normal distribution in terms of the averaging phenomena discussed in section 4.1,

and the distribution of trailing digits in Section 4.2, raises the question of whether

the data could have been produced wholesale (i.e., in entirety) from the use of a

random number generator. The most likely candidate for such simulation would be

a multivariate normal distribution with marginal and joint characteristics equal to

the means, variances, and covariances reported for the Flemming data and described

in Section 3 of this report. Given a moderate amount of statistical sophistication,

anyone could produce such a data set. That this is unlikely to be the case in the

current situation is evidenced by the failure of marginal distributions of weight0,

weight1, and weight2 to follow univariate normal distributions. A known property

of multivariate normal distributions is that the marginal distributions corresponding

to individual variables are univariate normal in form. Figure 4 presents histograms

of the marginal distributions of weight0 for the simulated data set in the upper panel

and the Flemming data set in the lower panel. The simulated data (upper panel)

exhibit a distribution consistent with a normal theoretical distribution, which they

should. The Flemming data (lower panel) exhibit a distinct skew right distribution,

consistent with the observation of the scatterplots of weight versus height in Figure
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2 (see Section 3 of this report). Is it possible to simulate data that have the char-

acteristics of the Flemming data set? The answer is yes, it is possible, but doing so

would require the ability to preserve means, variances, and correlations as described

in Section 3 of this report, preserve the averaging property described in Section 4 of

this report, and produce the difference in marginal distribution of weights at time 0

given in Figure 4. There exist ways to achieve all of this but they require a relatively

high level of statistical knowledge, including the time and ability to write computer

functions for tasks that are not readily available in pre-packaged routines.

6 Influence on Results

Falsification of data often has the objective of producing certain results in a data

analysis. Quantification of the influence of each observation on the resultant analysis

can then sometimes highlight one or a group of observations that played a large role

in determining the outcome and conclusions of a study. While not in any manner ev-

idence of falsified values by themselves, the occurrence of high influences can suggest

cases worthy of additional examination. In the report on results of the Flemming

study provided to me, the analysis consisted of two paired t-tests, one conducted

on the difference in weight0 and weight1 values and the other conducted on the

differences in weight1 and weight2 values. To examine the influence of recorded

data values on these tests I simply deleted observations one at a time from the data,

recomputed the test statistic without that value, and took the difference (absolute

value) of that deleted-case statistic with the test statistic computed using the en-

tire data set. This value then provides an indication of the influence of individual

observations on the test conducted with the entire set of values. A summary of the

influence values produced using the Flemming, Hansen, and simulated data for the

comparison of weight0 and weight1 values is presented in Table 16, and the same is
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reported for the comparison of weight1 and weight2 values in Table 17.

Data Set Min Q1 Q2 Q3 Max

Flemming 0.0223 0.1758 0.2461 0.3079 2.8390

Hansen 0.0042 0.1883 0.3102 0.3133 2.4840

Simulated 0.0211 0.1309 0.2784 0.3265 0.9403

Table 16: Summary of influence values for comparison of weight0 and weight1

records.

Data Set Min Q1 Q2 Q3 Max

Flemming 0.0111 0.1564 0.1833 0.2376 1.306

Hansen 0.0631 0.1347 0.1928 0.2400 0.9118

Simulated 0.062 0.1794 0.2491 0.2818 0.5538

Table 17: Summary of influence values for comparison of weight1 and weight2

records.

The most notable feature of both Table 16 and Table 17 is the extreme distance

between the third quartile (or 75%−tile, denoted Q3) of influence values and the

maximum influence value for the Flemming data in both Table 16 and Table 17,

and the Hansen data, at least in Table 16. Stem and leaf plots demonstrate that

this is due to only one extreme value that is hugely separated from the reamainder

of the data. For example, the influence values for the Flemming data of Table 16

have the following stem-and-leaf plot:
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The data record that corresponds to the single observation with influence value

2.8 (which is just over 9 times larger than the next larges value) corresponds to

subject 52 having height= 66, weight0= 186, weight1= 189 and weight2= 192.

This subject gained weight between each weighing. The result is that, while highly

influential relative to any of the other data records, the results for this subject

decreased the size of the test statistic and hence the significance of the overall

findings of the study. If this record was falsified the only reasonable objective would

have been to purposely introduce one outlier into the data to make it look more

“real”, not to produce a desired result in the analysis of the study. This same

observation is also the one extreme influence value for the Flemming data from

Table 17.

Curiously, the Hansen data also contain exactly one such record, for what would

be subject 45 in those data, with values height= 72, weight0= 275, weight1= 277

and weight2= 279. I surmise at this point that the Hansen data were not fab-

ricated from scratch but, rather, took the Flemming data as a template to which

various modifications were made in a haphazard but more-or-less “symmetric” man-

ner. This would explain the close correspondence between marginal and joint data

distributions for the Flemming and Hansen data and the reason the Hansen data
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appear internally consistent (see Section 3). If those modifications were made hap-

hazardly (i.e., by simply switching records and writing down different trailing digits

in a seemingly haphazard manner) then this would also explain the trailing digit

preference for weight0 seen in the Hansen data although, again, I hesitate to make

too much of this occurrence.

7 Conclusions

As stated in the opening paragraph of this report, a statistical examination of data

cannot definitively prove or disprove the falsification of data records. The analy-

sis conducted in this report, however, does allow the following conclusions to be

comfortably reached.

1. If the Flemming data were falsified it would appear that they were fabricated

in a nearly wholesale fashion, that is, more-or-less in total. These data are

internally consistent, consistent with the behavior of values simulated from

a theoretical probability distribution, and there is only one data record with

undue influence on the results of the study (and this influence was in the

“wrong” direction).

2. Because of the properties listed in conclusion 1 and, in particular, the aver-

aging behavior described in Section 4 that the Flemming data shared with

simulated data , the most likely mechanism for fabrication in this study must

be considered simulation from some theoretical probability model.

3. Because of the multivariate nature of the four recorded data values for each

subject, maintaining internal consistency would require, or at least strongly

suggest, that a multivariate probability distribution would need to have been

employed to simulate data values. The candidate most readily available to
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non-statisticians (and even to statisticians without extensive experience in the

construction of multivariate distributions from other probability structures) is

the multivariate normal distribution.

4. The marginal moments (means, variances) and joint moments (covariance or

correlation) of the Flemming data could easily be maintained through simu-

lation from a multivariate normal distribution. However, the skew shape of

marginal weight distributions (e.g., Figure 4) could not.

5. Combining items 1 through 4 immediately above suggests that, if the Flem-

ming data were fabricated, the procedure used to arrive at the reported values

was necessarily complex, requiring considerable statistical expertise and time

to conduct. If it were supposed that the most likely motivation for data fabrica-

tion in this situation was to save time and effort relative to actually performing

the observational process, this would seem at odds with what would have been

needed for fabrication of the data.

6. Finally, the Hansen data represent an interesting construction if they were

produced from scratch, but much less so if they were produced through mod-

ification of the Flemming data. If they were produced from scratch they

achieved remarkable success in preserving marginal and joint data structure

and relative evenness in influence (either through chance or design). If they

were produced through modification of the Flemming they simply borrowed

these properties from values that already possessed them. My suspicion is that

these values were obtained by either modifying the Flemming data or, at the

very least, using those data as a template for construction. The one property

expected of actual data that could not be entirely maintained in the Hansen

data was a uniform distribution of trailing digits in recorded values, although

whether this is a valid criterion for the current situation is not entirely clear,
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as explained in Section 4.2.

Overall, there is simply no data-driven evidence that the Flemming data set is

other than would be expected under a legitimate study. While there are several

aspects of the Hansen data set that might cause concern, there is no definitive

indication that these data were fabricated either, absent the knowledge that this

was the case. This would not be unexpected if the Hansen data were patterned

after the Flemming data, but if the Hansen data were fabricated from scratch they

should be preserved as a case study against which to test statistical methods of

unusual patterns in falsified data.
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Figure 1: Histograms of height values from the Flemming data (top) and Hansen

data (bottom).
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Figure 2: Scatterplots of weights against heights for the Flemming data.
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Figure 3: Scatterplots of weights against heights for the Hansen data.
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Figure 4: Histograms of weight at time 0 for the simulated data set (upper panel)

and the Flemming data set (lower panel).
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Appendix 1: R Functions Used in the Analysis of the

Report.

1. Simulation of Values from a Multivariate Normal Distribution.

randdat<-function(muvect,Sigmat,n){

# requires package bayesurv

#

rawdat<-rMVNorm(n,muvect,Sigmat)

roundat<-round(rawdat,0)

orig<-1:60

ind1<-sample(orig,5)

ind2<-sample(orig[-ind1],9)

ind3<-sample(orig[-c(ind1,ind2)],4)

roundat[ind1,1]<-roundat[ind1,1]+0.25

roundat[ind2,1]<-roundat[ind2,1]+0.5

roundat[ind3,1]<-roundat[ind3,1]+0.75

ind11<-sample(orig,11)

roundat[ind11,2]<-roundat[ind11,2]+0.5

ind21<-sample(orig,9)

roundat[ind21,3]<-roundat[ind21,3]+0.5

ind31<-sample(orig,3)

roundat[ind31,4]<-roundat[ind31,4]+0.5

roundat<-cbind(1:n,roundat)

dat<-as.data.frame(roundat)

names(dat)<-c("subject","ht","wt0","wt1","wt2")

return(dat)

}
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2. Compare “suspect” data records to averages of other pairs.

checkavging<-function(dat,suspectno){

suspect<-dat[dat$subject==suspectno,]

rdat<-dat[-suspectno,]

rn<-dim(rdat)[1]

npairs<-rn*(rn-1)/2

res<-c(rep(0,7))

cnt1<-0

repeat{

cnt1<-cnt1+1

t1<-rdat[cnt1,]

cnt2<-cnt1

repeat{

cnt2<-cnt2+1

t2<-rdat[cnt2,]

tsubs<-c(rdat$subject[cnt1],rdat$subject[cnt2])

#cat("tsubs: ",tsubs,fill=T)

tavg<-0.5*(t1+t2)

flag1<-(tavg$ht==suspect$ht)

flag2<-(tavg$wt0==suspect$wt0)

flag3<-(tavg$wt1==suspect$wt1)

flag4<-(tavg$wt2==suspect$wt2)

nflags<-flag1+flag2+flag3+flag4

if(nflags>0){

tres<-c(tsubs,nflags,flag1,flag2,flag3,flag4)

res<-rbind(res,tres)}

if(cnt2==rn) break
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}

if(cnt1==rn-1) break

}

return(res)

}

#---------------------------------------------------------------------------

summarycheckavg<-function(dat,suspectnos){

sk<-length(suspectnos)

res1<-NULL; res2<-NULL; res3<-NULL; res4<-NULL; res5<-NULL

res6<-NULL; res7<-NULL; res8<-NULL

cnt<-0

repeat{

cnt<-cnt+1

tsus<-suspectnos[cnt]

tres<-checkavging(dat,tsus)

rs<-dim(tres)[1]

if(is.null(rs)==FALSE){

if(rs==1){

res1<-c(res1,tsus)

res2<-c(res2,tres[1])

res3<-c(res3,tres[2])

res4<-c(res4,tres[3])

res5<-c(res5,tres[4])

res6<-c(res6,tres[5])

res7<-c(res7,tres[6])

res8<-c(res8,tres[7])

}
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if(rs>1){

cnt2<-0

repeat{

cnt2<-cnt2+1

ttres<-tres[cnt2,]

res1<-c(res1,tsus)

res2<-c(res2,ttres[1])

res3<-c(res3,ttres[2])

res4<-c(res4,ttres[3])

res5<-c(res5,ttres[4])

res6<-c(res6,ttres[5])

res7<-c(res7,ttres[6])

res8<-c(res8,ttres[7])

if(cnt2==rs) break

} } }

if(cnt==sk) break

}

res<-data.frame(suspect=res1,other1=res2,other2=res3,nflags=res4,

flag1=res5,flag2=res6,flag3=res7,flag4=res8)

res2<-res[res$other1!=0,]

return(res2)

}

3. Examine distributions of trailing digits.

digitdist<-function(dat){

ht<-dat$ht

wt0<-dat$wt0
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wt1<-dat$wt1

wt2<-dat$wt2

ht<-floor(ht)

wt0<-floor(wt0)

wt1<-floor(wt1)

wt2<-floor(wt2)

ldht<-ht-10*floor(ht/10)

ldwt0<-wt0-10*floor(wt0/10)

ldwt1<-wt1-10*floor(wt1/10)

ldwt2<-wt2-10*floor(wt2/10)

htfs<-NULL; wt0fs<-NULL; wt1fs<-NULL; wt2fs<-NULL

cnt<--1

repeat{

cnt<-cnt+1

thtf<-sum(ldht==cnt)

twt0f<-sum(ldwt0==cnt)

twt1f<-sum(ldwt1==cnt)

twt2f<-sum(ldwt2==cnt)

htfs<-c(htfs,thtf)

wt0fs<-c(wt0fs,twt0f)

wt1fs<-c(wt1fs,twt1f)

wt2fs<-c(wt2fs,twt2f)

if(cnt==9) break

}

res1<-data.frame(digit=0:9,ht=htfs,wt0=wt0fs,wt1=wt1fs,wt2=wt2fs)

tstht<-sum((res1$ht-6)^2/6)

tstwt0<-sum((res1$wt0-6)^2/6)
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tstwt1<-sum((res1$wt1-6)^2/6)

tstwt2<-sum((res1$wt2-6)^2/6)

pht<-1-pchisq(tstht,9)

pwt0<-1-pchisq(tstwt0,9)

pwt1<-1-pchisq(tstwt1,9)

pwt2<-1-pchisq(tstwt2,9)

res2<-data.frame(var=c("ht","wt0","wt1","wt2"),

tst=c(tstht,tstwt0,tstwt1,tstwt2),

pval=c(pht,pwt0,pwt1,pwt2))

res<-list(res1,res2)

return(res)

}

4. Compute influence values.

influencefctn<-function(dat){

wt2<-dat$wt2

wt1<-dat$wt1

wtdif<-wt1-wt2

mn<-mean(wtdif)

v2<-var(wtdif)

n<-length(wtdif)

realt<-mn/sqrt(v2/n)

subs<-NULL; infls<-NULL

cnt<-0

repeat{

cnt<-cnt+1

tsub<-dat$subject[cnt]
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tvals<-wtdif[-cnt]

tt<-mean(tvals)/sqrt(var(tvals)/(n-1))

tinfl<-abs(tt-realt)

subs<-c(subs,tsub)

infls<-c(infls,tinfl)

if(cnt==n) break

}

res<-data.frame(subject=subs,influence=infls)

return(res)

}

Appendix 2: Data Sets Used in This Report.

1. The Flemming Data.

subject ht wt0 wt1 wt2

1 63.5 164 160 157

2 63.75 170 167 164

3 62.75 178 176 176

4 65 160 158.5 158

5 65 149.5 145 139.5

6 62.25 201.5 197.5 197.5

7 70 214.5 212 211

8 68.25 180 177 174

9 64 180 177 175

10 64.75 158.5 156.5 155

11 67.25 176.5 173.5 173

12 64 160 159 155

13 65.5 220 213 211
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14 76 273 270 267

15 62 183.5 179 176

16 71 208 203.5 200

17 62.5 146 144 140

18 62.25 266.5 262 255

19 70 278.5 270.5 264

20 63.5 198.5 196.5 195

21 73.75 252 246 240

22 67.5 208 204.5 202

23 61.25 147.5 139 128.5

24 63 205 200 197

25 68 195 193 189

26 60.5 159 154 150

27 65 189 184 181

28 64.5 180 176 173

29 65 167 164 160

30 66 154 150 147

31 68 203 198.5 195

32 71 207 204 200

33 69 182 176 175

34 67.5 179 175 169

35 66.5 165.5 163 162

36 63 149 145 143

37 69 184 181 177

38 65 162 159 154

39 67 199 196 190

40 70 245 239 233
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41 67 201 195 191

42 70 205 200 196

43 69 174 167 163

44 62.5 268 263 258

45 71 280 275 272

46 66 208 204 199

47 68 252 247 244

48 66 198 195 189

49 68 154 149 148

50 65 189 186 182

51 69 197 194 188

52 66 186 189 192

53 68 205 201 199

54 70 301 295 293

55 62 148 146 141

56 67 173 168 165

57 66 197 192 190

58 61 154 150 147

59 69 171 168 164

60 65 163 157 155

2. The Hansen Data.

subject ht wt0 wt1 wt2

1 66 180 176 173

2 62 163 160 157

3 72 232 230 230

4 68 175 173 172



42

5 69 180 175 169

6 73 255 251 250

7 64 175 173 172.5

8 65.5 162 159 156

9 70.5 225 222 219

10 69 180 177 175

11 72 203 200 199

12 70 180 179 175

13 71 245 238 235

14 65 207 204 201.5

15 66.5 200 196 193

16 63 157 153 150

17 74 195 193 189

18 67.5 285 281 278

19 62 225 217 211.5

20 67 165 163 162

21 72 240 234 230

22 62 175 172 170

23 68 173 165 156

24 71 253 248 245

25 61 157 155 151

26 63 177 172 168

27 73 240 235 232

28 70 206 202 199.5

29 75 223 219 214

30 69 170 166 157

31 75 248 242 238
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32 60 148 145 141

33 69 184 179 178

34 64 162 158 152

35 74 205 202 201

36 68 175 171 169

37 64.5 158 155 151

38 71 204 201 196

39 69 213 209 203

40 75 260 254 248

41 70 220 214 210

42 62 158 153 150

43 65 151.5 147 143.5

44 61 253 248 248

45 72 275 277 279

46 74.5 260 256 251

47 66 230 225 222

48 69 223 220 215

49 64 129 125 124

50 60 159 156 153

51 71 213 209 203

52 70 207 205 204

53 63 178 174 172

54 68 278 272 270

55 73 210 208 203

56 72 191 185 182

57 69 212 207 205

58 70 203 199 196
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59 70.5 177 174 170

60 61 148 143 141

3. The Simulated Data.

subject ht wt0 wt1 wt2

1 67.5 207 202 200

2 62 161 161 161

3 70 269 263.5 254

4 65 188 184 181

5 69 249 244 237

6 67 166.5 162 157

7 75 211 208 204

8 66 208 205 202

9 65 205.5 200 196

10 66 206 200 197

11 65 181 178.5 174

12 66 200.5 196 192

13 66 171 168.5 167

14 71 235 232 231

15 66 179 173 170

16 61 161 157 155

17 63 179 175.5 174

18 72 147 145 143

19 70 231 225 220

20 63 136 132.5 125

21 63.25 217.5 213 212

22 69 236 231 226



45

23 67 171 166 162

24 71 193 188 186

25 67.5 174 169.5 166.5

26 72.5 265.5 258 254

27 65 214 211 207

28 65 185 180.5 180

29 63 192.5 189 184

30 67 231 227.5 224

31 65 192 188 185.5

32 67 218 217 216

33 63.5 184 177 168

34 65.75 222 215 209.5

35 67 207 201 196

36 66.5 257 256 254

37 72 223 218 212

38 71 221 214 210

39 66.25 213 209 206

40 66 239.5 236 233

41 67 143 140 137

42 64.25 221 216 211

43 66 209 203 198

44 68.25 181.5 179 177

45 69.5 243 234 229

46 70 252 247 242

47 64 158 156 155

48 68 222 220.5 215

49 70.5 257 249 242
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50 69.75 219 216 212

51 69.25 156.5 154 150

52 68 191 187 184

53 64.5 182 180 174

54 73.75 252 247 242

55 70 194.5 190 186

56 61 210.5 206 204

57 68.5 265 257 253

58 62 187 182 177

59 71.75 198 192 188

60 64 145 142 140


