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Molecular recognition in the infection, replication,
and transmission of COVID-19-causing SARS-CoV-2:
an emerging interface of infectious disease,
biological chemistry, and nanoscience
Prem Kumar1, Jeladhara Sobhanan2, Yuta Takano 2,3 and Vasudevanpillai Biju 2,3

Abstract
A coronavirus (CoV) commonly known as SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and causing
COVID-19 (coronavirus disease of 2019) has become a pandemic following an outbreak in Wuhan. Although mutations in
the SARS-CoV-2 spike glycoprotein (SGP) are obvious from comparative genome studies, the novel infectious nature of the
virus, its new varients detected in the UK, and outside and recovery–death ratios of COVID-19 inspired us to review the
mechanisms of the infection, replication, release, and transmission of progeny virions and the immune response in the host
cell. In addition to the specificity of SARS-CoV-2 binding to angiotensin-converting enzyme 2 receptor and transmembrane
protease serine 2, the varied symptoms and severity of the infection by the original and mutated forms of the virus suggest
the significance of correlating the host innate and adaptive immunity with the binding of the virus to the mannose
receptor via lipopolysaccharides (LPSs), toll-like receptors via LPS/proteins/RNA, and sialic acid (Sia) via hemagglutinin, or
sugar-acid segments of glycans. HA-to-Sia binding is considered based on the innate Sia N-acetylneuraminic acid and the
acquired Sia N-glycolylneuraminic acid in the epithelial cells and the sialidase/neuraminidase- or esterase-hydrolyzed release
and transmission of CoVs. Furthermore, the cytokine storms common to aged humans infected with SARS-CoV-2 and aged
macaques infected with SARS-CoV encourage us to articulate the mechanism by which the nuclear capsid protein and
RNAs bypass the pattern recognition-induced secretion of interferons (IFNs), which stimulate IFN genes through the Janus-
activated kinase-signal transducer and activator of a transcription pathway, leading to the secretion of antiviral proteins such
as myxovirus resistance protein A/B. By considering the complexities of the structure, and the infectious nature of the virus
and the structures and functions of the molecules involved in CoV infection, replication, and immune response, a new
interface among virology, immunology, chemistry, imaging technology, drug delivery, and nanoscience is proposed and
will be developed. This interface can be an essential platform for researchers, technologists, and physicians to collaborate
and develop vaccines and medicines against COVID-19 and other pandemics in the future.

Introduction
The halo or crown structure of the proteinaceous spike

peplomers or glycoproteins (SGPs) detected in a

transmission electron microscope image (Fig. 1) is the basis
for the name coronavirus (CoV) given to viruses causing a
series of respiratory illnesses, including COVID-19 (cor-
onavirus disease of 2019), SARS (severe acute respiratory
syndrome), and MERS (Middle East respiratory syndrome).
The structure1, size (80–120 nm)2, genome3,4, and RNA-
based pathogenesis5,6 of SARS-CoV-2 resemble those of
other CoVs7. The highly pathogenic nature of SARS-CoV-2
and its recent genetic varients suggests that the binding

© The Author(s) 2021
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Vasudevanpillai Biju (biju@es.hokudai.ac.jp)
1Graduate School of Engineering Science, Akita University, 1-1 Tegata Gakuen-
machi, Akita-shi 010-8502, Japan
2Graduate School of Environmental Science, Hokkaido University, Sapporo,
Hokkaido 060-0810, Japan
Full list of author information is available at the end of the article
These authors contributed equally: Prem Kumar, Jeladhara Sobhanan

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0001-9469-6253
http://orcid.org/0000-0001-9469-6253
http://orcid.org/0000-0001-9469-6253
http://orcid.org/0000-0001-9469-6253
http://orcid.org/0000-0001-9469-6253
http://orcid.org/0000-0003-3650-9637
http://orcid.org/0000-0003-3650-9637
http://orcid.org/0000-0003-3650-9637
http://orcid.org/0000-0003-3650-9637
http://orcid.org/0000-0003-3650-9637
http://creativecommons.org/licenses/by/4.0/
mailto:biju@es.hokudai.ac.jp


affinities of these pathogens are high for a host cell, and it
competently bypasses or blocks the cytokine (interferon
(IFN))-triggered immune responses of a host cell. Thus, the
following fundamental questions related to the tropism,
replication, and release/transmission of SARS-CoV-2 face
us. How does SARS-CoV-2 acclimate to the specific SGP
genes3,4,7,8 that supplement the virus with a furin cleavage
segment (FCS)1,9 to efficiently recognize angiotensin-
converting enzyme 2 receptor (ACE2R)1,10 and bind to it?
Is hemagglutinin (HA) a coreceptor for sialic acid (Sia)-
based binding to a host cell? How does neuraminidase
(NASe)- or esterase (ES)-based cleavage release a progeny
virion? How do nonstructural proteins, the nuclear capsid
(NC) and other structural proteins, and RNA bypass the
IFN-induced JAK-STAT (Janus-activated kinase-signal
transducer and activator of transcription) mechanism and
form progeny virions11–13? Initially, SARS-CoV-2 was con-
nected to Rhinolophus affinis (R. affinis), a bat species,

because of the 96% sequence similarity between the 29.9 kb
RNA of SARS-CoV-2 and the RNA of RaTG13 virus in R.
affinis7,8,14. The similarities between the SGP amino acids of
SARS-CoV-2 and Malayan pangolin (Manis javanica, M.
javanica) CoV (pangolin-CoV) attracted further attention to
the studies on the chimeric nature of the viral RNA and the
origin of SARS-CoV-215,16. Independent of the suggested
lineage relationships between RaTG13, SARS-CoV-2, and
Pangolin-CoV, investigations have validated the zoonotic
evolution of SARS-CoV-2. An emerging and serious con-
cern about COVID-19 is the propagation of SARS-CoV-2
RNA mutations16–18 in humans or animals, particularly
during the development of an effective drug or vaccine
against COVID-19.
Following the repeated declarations of emergency in

most countries and by the World Health Organization
(WHO), the pharmaceutical giants and private and public
research organizations in Russia, the United States, the

Fig. 1 The structures of CoVs and SARS-CoV2. A Transmission electron microscope (TEM) image of human respiratory alphacoronavirus particles
critical for infection with the common cold, bronchiolitis, and pneumonia. B, C TEM images of SARS-CoV-2. Courtesy of CDC 1975 and NIAID-RML.
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United Kingdom, India, Japan, China, Italy, Spain, Bel-
gium, Germany, Australia, Singapore, and Israel began
developing drugs and vaccines against COVID-19 without
neglecting the abilities of an RNA virus to bypass an
antiviral drug or modify its own genome to override the
innate or adaptive immunity of the host. The early epi-
sodes of COVID-19 show similarities of SARS-CoV-2
pathogenesis to influenza viruses, HIV (human immuno-
deficiency virus), Ebola virus, SARS-CoV, and MERS-CoV.
Thus, various antiviral drugs have been tested in COVID-
19 patients, such as Tamiflu19 and favipiravir20, which are
used against common influenza viruses; lopinavir and
ritonavir21, which are used against HIV; and remdesivir22,
which is used against Ebola virus, Marburg virus, Lass
virus, Syncytial virus, Nipah virus, Junin virus, Hendra
virus, and CoVs causing SARS and MERS. In addition,
several clinical tests were conducted with drugs against
malaria-causing Plasmodium falciparum (P. falciparum),
such as chloroquine23, mefloquine24, hydroxychloroquine
(HCQ)25, artemisinin26, clindamycin27, doxycycline28, and
pyrimethamine29. The positive and negative outcomes of
these tests alarm tropism switching and genetic mod-
ification of the virion. The ongoing treatments of a
COVID-19 patient includes the suppression of RNA
copying by evading exoribonuclease proofreading, for
which the blocking of the endolysosomal transport of the
virus-encapsulated endosome is under debate25. In addi-
tion, the positive outcome of remdesivir in inhibiting Ebola
virus by mutating its RNA is correlated with the positive
response of this drug against the first COVID-19 case in
the United States30. Nonetheless, the side effects of these
drugs, including cardiac malfunction in patients treated
with the chloroquine derivatives31, should be carefully
considered during the management of COVID-19.
In addition to the aforementioned tests, molecular-level

information (Fig. 2) about the infection, immune response,
replication, and transmission of SARS-CoV-2 is inevitable
during the development of an effective vaccine or a drug.
The complexity of the infection and treatment demands a
novel platform at the interface of virology, immunology,
drug delivery, genetics, chemistry, materials science, and
nanoscience, which will help researchers, physicians, and
technologists to collaborate and develop vaccines and
medicines against COVID-19. The efficient use of the
wealth of information about nanomaterials32–36, imaging
probes37–41, bioimaging techniques42–46, vaccine develop-
ment47–51, and in vitro and in vivo drug/gene/nanomaterial
delivery52–61 is essential. Nevertheless, the toxicity of
nanomaterials62–66 is a major concern during the con-
sideration of virus mimetic nanoviruses for in vivo appli-
cations. This article summarizes the fundamental aspects of
the molecular interactions in viral infection and the host
immune response and provides future prospects for the
aforementioned interface in the fight against the pandemic.

The roles of SGP and ACE2R in viral infection
The membrane-binding proteins of viruses have highly

conserved frameworks that are modified according to the
available receptors in a host cell. These proteins are
β-spirals, similar to those in SGP of SARS-CoV-21, or the
coiled-coil α-helix, such as those in HA67 of the influenza
virus. We independently consider the roles of SGP-to-
ACE2R binding and HA-to-Sia binding (Fig. 2) in SARS-
CoV-2 infection. Mechanistically, SARS-CoV-2 infection
begins with the recognition of its SGP receptor-binding
domain (RBD; Fig. 3) by ACE2R in the host epithelial cells
of the respiratory system. The low affinity of ACE2R to its
natural ligand is an advantage for the virus. The SGP-to-
ACE2R affinity suggests that ACE2Rs in the vascular
endothelial cells and myocytes increase the risk and
mortality through the systemic transmission of SARS-
CoV-2 to vital organs such as the kidneys and the
heart68,69. This risk factor is correlated with irregular
heartbeats and increased levels of troponin I and creatine
kinase in acute COVID-19 patients70. Similarly, physicians
are in the early stage of correlating ACE2R and COVID-19
with an immune overreaction and an inflammation in
children, which are similar to Kawasaki disease71, affecting
vital organs such as the liver, heart, and kidneys.
The spike in HCQ prescriptions for use against COVID-

19 has produced positive and negative results, as well as
different opinions about the action of the drug. Although
HCQ shows many side effects, including delayed ven-
tricular repolarization and low pulse rates, the success
stories of this drug in COVID-19 patients suggest the
drug has bimodal action involving the suppression of
glycosylation of ACE2R and SGP and the inhibition of
RNA release by attenuating the endolysosomal passage of
the virion-encompassed endosomes31,72. Thus, HCQ
suppresses the release of both SARS-CoV-2 RNA and the
progeny virions. Furthermore, HCQ can suppress cyto-
kine production73 and inhibit matrix metalloprotei-
nases74. Nevertheless, the overall outcome for patients
treated with HCQ is not positive, which has guided the
WHO and many countries to stop recommending this
drug for treating COVID-19.
The amino acid residues, particularly five of the six

residues critical for SGP-to-ACE2R binding, show a
similarity between SARS-CoV-2 and Pangolin-CoV,
whereas four of the six critical amino acids in RaTG13 are
different7,8,14. However, the presence of a polybasic FCS at
the S1–S2 boundary of SGP in SARS-CoV-21,9, which is
not common to Pangolin-CoV or other CoVs, increases
the affinity of SGP to ACE2R. The deep canyon formed at
the S1–S2 junction of SGP enables the efficient binding of
the virus to ACE2R. Following binding, the proteolytic
S1–S2-cleaved subunits endow SGP with a 10- to 20-fold
greater affinity for ACE2R and a more infectious nature to
SARS-CoV-2 than SARS-CoV. In contrast, the trimeric
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Fig. 2 The lifecycle of SARS-CoV-2 in a human respiratory epithelial cell. A scheme of cell binding, endocytosis, viral uncoating, transcription,
translation, replication, and release of SARS-CoV-2.
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RBD of SARS-CoV is conserved throughout the infection
period. The S1 subunit helps SARS-CoV-2 bind to
ACE2R, and S2 enables the entry of the virus into a host
cell. The free-energy change accompanying an SGP-
induced conformational change to an ACE2R increases
the infectivity by favoring the binding of another SGP of
the same or different virus to a proximal receptor. Indeed,
the energy barrier for appropriately destabilizing the host
cell membrane and membrane fusion is as high as 42 kcal/
mol, which can be supplemented by the low-affinity
pseudo or secondary receptors in a host cell, such as
heparin sulfate, ceramide derivatives, and HA.
The genes for FCS in SARS-CoV-2 suggest that a

mutation occurred in R. affinis, M. javanica, or humans.
Nevertheless, S1–S2 cleavage and the specificity of SGP to
ACE2R indicate repeated passages of the SARS-CoV-2
progenitor in host cells expressing ACE2R, such as in
humans, pigs, or civets. Thus, we do not rule out the
possibility that the progenitor infected a human and
repeatedly passed through one or more persons, who may
or may not have shown COVID-19 symptoms. To date,
there is no evidence to suggest that SARS-CoV mutated to
SARS-CoV-2 in a cell or an animal model. Nevertheless,

the mutations to SARS-CoV-2 continue to emerge in
COVID-19 patients and is likely to continue further
through animal and human hosts because, similar to other
CoVs, SARS-CoV-2 virus lacks an enzyme for RNA
proofreading, and preparations are necessary to deal with
more strains that are more aggressively infectious than
SARS-CoV-2. Despite the involvement of FCS, SGP, and
ACE2R moieties in infection, the roles of Sias and HAs in
SARS-CoV-2 and coreceptors such as chemokine recep-
tors and O-linked glycan receptors in host cells should be
considered during not only the development of a vaccine
or a drug but also selecting foods and supplements to
fight COVID-19.

The roles of Sia and HA in the infection and
replication
Sia-capped proteoglycans in cells, secreted molecules, and

vaccines play key roles in cell repulsion/adhesion, embry-
ogenesis, pathogenesis, and the immune response75,76. HA
(Fig. 4A), a lectin with ligand-binding domains 1 and 2, is
common to CoVs. The binding of a pathogen to a Sia, such
as the HA-based binding of CoVs to N-acetylneuraminic acid
(Neu5Ac) (Fig. 4B), is the first step of an infection77,78. Thus,
HA-to-Sia binding is addressed in several experimental and
theoretical studies involving HA of influenza viruses77,79–81.
Domain 1 (Fig. 4C) of HA shows a high affinity for Sia-
capped glycans in a host cell77. Similarly to HA enrichment
in an inactivated influenza vaccine, we hypothesize that one
of the aims of COVID-19 management can be the HA-based
binding of SARS-CoV-2 to proteoglycans in a host cell. We
suggest this strategy by considering the binding of a mutated
HA in the avian influenza virus to Neu5Ac in human epi-
thelial cells75,77,82. Neu5Ac is human-specific α2–6-linked Sia
that caps the outermost parts of proteoglycans in cell

Fig. 3 The vital structures involved in the SARS-CoV-2 infection.
A A cartoon structure of SARS-CoV-2 showing its SGPs. B The SGP and
RBD structures of SARS-CoV-2174. B Copyright of the Royal Society of
Chemistry.

Fig. 4 Molecular structures other than SGP and ACE2R in the
binding of SARS-CoV-2 to a host cell. The structures of A HA, B the
Neu5Ac segment of Sia, and C the Sia-binding domain of HA.
Courtesy of D. Sehnal, A. S. Rose, J. Kovca, S. K. Burley, S. Velankar
(2018), RCSB Protein Data Bank 3GBN.
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membranes and secretions. Sia derivatives inhibit HA and
prevent the attachment of influenza viruses to cells77. In
contrast, the native HA of a CoV selectively binds to N-
glycolylneuraminic acid (Neu5Gc) in a bird and the bird-to-
human transmission is inefficient83. While several studies
have focused on mutations to SGP and SGP-to-ACE2R
binding, less attention has been directed to the roles of HA
and Neu5Ac in SARS-CoV-2 and the levels of Neu5Ac in the
upper respiratory system and the lungs of COVID-19
patients. Nonetheless, the affinity of HA for Neu5Gc
should be considered. The presence of HAs and Neu5Ac-
selective NAs in CoVs directed our attention to the Sia-
bearing glycans, and the pathological and immunological
aspects of COVID-19.
Similarly to other pathogens, CoVs express Sia-bearing

glycans on their surfaces to deceive sensors that trigger IFN
signaling and bypass host innate immunity. Thus, verte-
brates modify their own glycans to fight pathogens. To
comprehend the HA- and Neu5Ac-based infection of the
respiratory epithelial cells by SARS-CoV-2, we compare the
structures (Fig. 4) of Neu5Ac and the Sia-binding domain
of the HA peptide. The multiple hydroxyl moieties in
Neu5Ac, which are hydrogen (H)-bond donors, and the
multiple carboxylic and amide moieties in the HA domain,
which are H-bond acceptors, can be the thermodynamic
regulators of the binding and infection. The strength of the
H-bonds formed between HA and Neu5Ac is assessed

based on the free-energy change of biotin–streptavidin (B-
S) complex formation (Fig. 5A)84. Although the net entropy
change (−13.7 kcal/mol) does not favor the formation of
the B-S) complex, the enthalpic contribution (−32 kcal/
mol) stabilizes it84–86. In the B-S complex, the enthalpy
change involves multiple H-bonds of the ureido and car-
boxylic groups in biotin to seven amino acids in avidin.
Similarly, by considering multiple H-bond donors and
acceptors in the HA domain and Neu5Ac, we calculate the
H-bond energy of the HA–Neu5Ac complex at 34.3 kcal/
mol using the B3LYP/6–31+G** level of the density
functional theory87. The initial structures of the HA
domain and Neu5Ac were obtained from the Protein Data
Bank88. In addition, the initial relative positions of the two
were assumed from the structures in the data bank. The
heat of HA-to-Neu5Ac complexation is not surprising to
us by considering the eight H-bonds between α2-3-linked
sialyllactose and the eight amino acids in the Sia-binding
domain of HA77. The appreciably high enthalpy of H-
bonding stabilizes the HA–Neu5Ac complex more than it
does in the B-S complex, enabling the HA–Neu5Ac com-
plex to form deep potential well that attracts a virus and a
progeny virion, which benefit from energy-efficient NA/ES-
hydrolyzed cleavage during endocytosis and release.
Although the HA-mediated binding of pathogens to

Neu5Ac in epithelial cells is common to many diseases, an
important lineage difference between chimpanzees and
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humans, that is, the presence of Ne5Gc in place of Ne5Ac in
chimpanzees, is neglected during clinical tests of the anti-
malarial drugs such as HCQ against SARS-CoV-2. While
chimpanzees or bonobos injected with P. falciparum-infec-
ted blood or exposed to P. falciparum-carrying Anopheles
mosquitoes do not show the malaria symptoms, P. falci-
parum infects human erythrocytes expressing Neu5Ac and
causes life-threatening malaria89–92. In contrast, Plasmo-
dium reichenowi, which shares a common ancestor with P.
falciparum, effectively infects apes expressing Neu5Gc in
their cell membrane93. Thus, in addition to the FCS mod-
ification and ACE2R-based binding of SARS-CoV-2 onto
human respiratory epithelial cells, lineage-derived Neu5Ac
capping of epithelial glycoproteins may be at the center of
the human-selective lethal infection of SARS-CoV-2
through HA. Although HCQ suppresses the endosomal
escape of SARS-CoV-2, it does not show any relation to
Neu5Ac in humans or Neu5Gc in chimpanzees. Never-
theless, the risk factors for COVID-19 may be related to the
presence of any Neu5Gc-specific agglutinin in SARS-CoV-2
and a high level of Neu5Gc-capped glycans acquired
through the assimilation of animal proteins by the COVID-
19 patient. This HA- and Sia-based pathogenesis becomes
significant to CoVs bearing an ES and a NASe specific to the
α2-3-linked Sias. Although the T and B cells with the α2-6-
linked glycans and the macrophages surveilling for the
Neu5Ac-bearing pathogens play crucial roles in the immu-
nosuppression of HA-to-Sia selective infections, we suggest
that verifying the relationships of the acquired Neu5Gc to
various agglutinins, O-linked glycans, and ESes and NASes
is important. This verification can be relevant to COVID-19
because of the different infection and mortality rates of the
disease in populations with different dietary habits, and
lineages.

Pattern recognition, immune response, IFN
production, and virus replication
An immune response against SARS-CoV-2, similarly to

that against other CoVs and microbes, begins with the acti-
vation of a series of pattern recognition receptors (PRRs).
During surface binding, internalization, endosomal transport,
cytosolic uncoating, RNA polymerization, and translation in
a host cell, viral lipids, proteins, and RNA are recognized by
various pathogen-associated molecular patterns (PAMPs) in
the cell membrane, endosomes, and cytoplasm. This recog-
nition continues throughout the viral lifecycle in a host cell.
Figure 6 shows various PAMP- and PRR-associated immune
responses in COVID-19, which are analogous to other CoVs.
In contrast to a nonenveloped virus that enters a host cell by
the endocytic/nonendocytic path94,95, the enveloped nature
of SARS-CoV-2 leads to its preferential endocytic membrane
fusion through the recruitment of clathrin/calveolin96,97. The
mechanisms of infection involving the virological synapse,
cell penetration, and transcytosis have yet to be verified.

SARS-CoV-2 binds to a host cell through the SGP-TMPSS2-
ACE2R (SGP-transmembrane protease serine 2-ACE2R)
network1,8,14,68,69. In SGP-to-ACE2R binding, the free-energy
change of the conformation switching of a single SGP
enables membrane fusion98.
Following the extracellular ACE2R-specific binding using

SGP, and the different stages of pattern recognition, the
immune responses in COVID-19 are classified according to
the activation of PAMPs by various viral patterns (Fig. 6). In
general, pattern recognition is initiated by the interactions of
surface proteins, genetic materials (single-stranded RNA
(ssRNA)/double-stranded DNA (dsRNA)/ssDNA/dsDNA),
or uncoated/translated proteins of a pathogen by PRRs, such
TLRs (toll-like receptors)99–103, RLRs (RIG-like recep-
tors)104–107, NLRs (NOD-like receptors)108–112, MDA-5
(melanoma differentiation-associated protein 5)113,114,
CLR/MR (C-type lectin-like receptor/mannose recep-
tor)115,116, and DAI (DNA-dependent activator of IFN-
regulatory factors (IRFs))117,118 in a host cell. For example,
the dsRNA of the nonenveloped Reoviridae family of viru-
ses, such as rotavirus, is recognized by TLR3, RIG-I (retinoic
acid-inducible gene I), and MDA-5119–121, whereas the
ssRNA of viruses such as SARS-CoV-2, SARS-CoV, MERS-
CoV, rhinoviruses, dengue virus, and hepacivirus C are
recognized in the endosome by TLR7 and TLR8122–127. In
contrast, the ssDNA of viruses such as the smallpox virus
and the chickenpox or varicella viruses is effectively recog-
nized by TLR9, and RIG-I128,129. Indeed, independent of the
DNA genome of various viruses, pattern recognition, and
IFN induction follow the RNA pathway because of reverse
transcription during replication.
Various PRRs and PAMPs involved in SARS-CoV-2 and

other pathogens are summarized in Fig. 6 and briefly dis-
cussed here. PAMP1 is initiated by the recognition of viral
lipopolysaccharide (LPS) by TLR4130 followed by its asso-
ciation with CD14, leading to the activation of the MyD88-
dependent131 and MyD88-independent132 pathways and the
secretion of several cytokines, including interleukin-1β (IL-
1β)/6/8/12, and IFN-α/β/γ. Extracellular PAMP2 is recog-
nized by TLR4133,134, which associates with CLRs such as
MR and activates the complex MAPK downstream signal-
ing. Only a part of the MAPK pathway leading to the
secretion of IL-1β/2/6/10/18, and TNF-α is shown in Fig. 6.
The cytosolic ion imbalance forms PAMP3135,136, which is
created by ion channel mimicking nonstructural viral pro-
teins137,138, pathogen-associated Ca2+ influx, or K+ efflux.
PAMP4 is triggered by ssRNA139,140 released from the
endosomes, subgenomic RNAs produced by the RNA-
dependent RNA polymerase, or the RNA fragments pro-
duced by RNASe-L. PAMP3 and PAMP4 are recognized by
NLRP3135–141, leading to the activation of multiple signaling
pathways by Casp-I and the secretion of various ILs, and
TNF-α, which are shown in Fig. 6. The NLRP3 inflamma-
some pathways are excluded here. PAMP5 is a combination
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Fig. 6 The mechanisms of SARS-CoV-2 infection and the corresponding immune responses. A scheme showing various pathways of the
extracellular binding, internalization, endosomal transport, and uncoating of SARS-CoV-2 and the corresponding pattern recognition and cytokine
production in a host cell.
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of viral proteins, including those uncoated and released from
endosomes, and those translated by reading the genomic/
subgenomic viral RNA. PAMP5 is recognized by RLR142–144,
which associates with MDA-5 and MAVS (mitochondrial
antiviral signaling) and activates IRF3/7, leading to the
secretion of IFN-α/β. PAMP6 is the endosomal recognition
of ssRNA by TLR7/8124,125,145–147, leading to multiple sig-
naling pathways through TNF receptor-associated factors
(IκB kinases and p38), and the secretion of IL-1/6, IFN-α/β,
and TNF-α.
IFNs148–157, a family of immunomodulatory macro-

molecular ligands or secreted cytokines play an important
role in an immune response against SARS-CoV-2. Apart
from the important antitumor and antiproliferative roles of
IFNs158,159, these cytokines help fight viral infections by
activating innate and adaptive immune responses. SARS-
CoV-2 pattern-recognized secretion of IFNs is shown in
Fig. 6. On the one hand, pattern recognition followed by
downstream signaling pathways produces ILs, IFNs, and
TNF-α and on the other hand, antiviral action is triggered
in the JAK-STAT transcription pathway, which is by sec-
ondary signaling and the activation of IFN receptors in the
infected and immune cells148,149. Among the 23 widely
known members in the IFN family in mammals, 21 are
common to the human body. Based on functioning, sig-
naling pathways, and clustering in chromosomes, IFNs are
classified into IFN-I, -II, and -III. IFN-I is the largest family,
with 19 members for which the genes are clustered on
human chromosome 9150. Among the 19 members, IFN-α
(13 homologs) and IFN-β distributed in essentially all cells
play the primary role in the innate response against
infections, through the JAK-STAT pathway. IFN-II, also
called IFN-γ, with its genes clustered in human chromo-
some 12151, is common to immune cells, and its secretion
and action are delayed until the immune cells are activated.
Thus, IFN-γ is the adaptive cytokine. IFN-III includes three
members, IFN-λ1, -λ2, and -λ3, also called ILs 28A, 28B,
and 29, with their genes clustered in human chromosome
19152. Similar to IFN-I cytokines, IFN-III cytokines are
induced by viruses and are secreted by any cell in response
to SARS-CoV-2. Thus, IFN-I and IFN-III secreted by the
respiratory epithelial cells initiate innate immunomodula-
tion against SARS-CoV-2. The JAK-STAT pathway of
secondary signaling is discussed elsewhere148,149.
Following asymptomatic infection by SARS-CoV-2, a per-

son with a weak immune system becomes sick and suffers
from a severe immune overreaction or cytokine storm,
leading to an increased respirational distress and fatality153.
Thus, immune suppressants such as Actemra or tocilizumab
are prescribed to COVID-19 patients159. Nonetheless, the
recovery rate of COVID-19 patients depends on the health
condition of the patients. For example, patients younger than
40 years old with diabetes, cardiovascular diseases, impaired
renal health, or cancer show a poor recovery rate after

COVID-19 infection160,161. The relationship between the
innate and adaptive immune (IFN) response of host cells,
including the production of various proinflammatory cyto-
kines, IFN-stimulated genes, IRFs, and various proteins
including myxovirus (Mx) proteins and the ability of the
virus to escape the immune response are important to the
recovery of a COVID-19 patient. Mutations to the RNA of
SARS-CoV-2 when compared with those in Pangolin-CoV,
MERS-CoV, SARS-CoV, and RaTG13 may provide clues
about turning off or overstimulating the IFN pathway in
COVID-19. The cytokine storm in several fatal COVID-19
cases suggests that the virus does not bypass pattern recog-
nition (Fig. 6). Thus, the role of IFN-inducible genes such as
ISGs and Mx-A/-B proteins, which are crucial for preventing
the formation of progeny virions through both the inactiva-
tion of the nucleocapsid (NC) protein and inhibition of the
progeny ribonucleoprotein, in the cytokine storm and the
progression of COVID-19 is being extensively investigated.
To date, there is no strong experimental correlation

between SARS-CoV-2 and any acute respiratory illness in
mice or pets. In addition, in contrast to humans, several
animals do not show functional IFNs. Thus, the long lineage
from a common ancestor of humans and animals should be
the basis for a search for a correlation between IFN-inducible
Mx genes and COVID-19. In addition to the presence of Mx-
inducible genes in humans, the defective Mx genes in mice
susceptible to influenza162 and the IFN-regulated Mx in mice
resistant to influenza163 educate us on the importance of
examining how SARS-CoV-2 inactivates the innate IFN-I/III
pathways and successfully integrates progeny virions.

Summary and outlook
Despite the auspicious progress of COVID-19 vaccine

research and vaccination, the highly infectious nature and
mutations of SARS-CoV-2 are warnings of a backbiting
annual revival of the virus. Evidence from RNA-sequencing
showing the infection mode of SARS-CoV-2 to be SGP-to-
ACE2R binding is supported by cleavage at the S1–S2
boundary of the furin segment. On the one hand, ACE2R in
the respiratory endothelial cells is involved in the infection,
and on the other hand, its presence in the cells of the heart,
kidneys, and other vascular systems underscores the rela-
tionship of COVID-19 to cardiovascular diseases, cancer,
and diabetes. Also, ACE2R-based infection may be related
to the Kawasaki disease-mimetic multisystem inflammatory
syndrome in children. In addition to ACE2R-based binding,
the roles of HA, Neu5Ac(Ge), and NASe/SE in SARS-CoV-
2 infection and release cannot be neglected.
The relationship between Sias and HA has attracted much

attention since the 1918 influenza (H1N1) pandemic,
whereas the details of the binding between the two are the
focus of ongoing studies. Enzymes such as NASe, which
cleaves the bond between the viral HA and the host Sias164,
likely have roles in the endocytosis of SARS-CoV-2 in the
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respiratory epithelial cells and the release of its progeny
through the ER pathway. Although the Neu5Ac Sia innate to
humans is the target of several pathogens, including CoVs,
the negative results for COVID-19 patients treated with
several antiviral drugs and vaccines may be related to
mutations in not only the FCS motif but also the Neu5Ac-
binding segment of HA. If a innate Sia is not the target of the
SARS-CoV-2 HA, it is worth considering a connection
between the levels of Sias acquired from the diet, such as
Neu5Gc, and the severity of COVID-19. Another aspect of
Sias in COVID-19 is the escape of the virus from the innate
IFN response, which is similarly to other pathogens that
express and modify Sias on the cell surface. In addition, the
abilities of Sia derivatives to inhibit HA and thwart influenza

viruses encourage us to hypothesize that dietary supplements
with acidic sugars, such as ascorbic acid, gluconic acid, sac-
charic acid, and tartaric acid, may have impacts on COVID-
19. Although clinical studies are needed to understand
whether Neu5Ac, Neu5Gc, other Sias, or sugar acids alleviate
the severity of COVID-19, diets rich in sugar acid-rich fruits
can always be recommended to a COVID-19 patient.
Nevertheless, the stereoselectivity of sugar acids, Sias, and
NASe/SE needs further study.
To resolve the preclinical challenges of COVID-19, an

interface among chemistry, nanoscience, cell biology, and
virology is emerging165–173. The primary objective can be
the construction of a SARS-CoV-2 mimetic virus nano-
particle (SCoV-MNP; Fig. 7) decorated with SPG, HA, and

Fig. 7 A scheme showing the prospects of SCoV-MNPs for SARS-CoV-2 mimetic research at the interface of materials science, chemistry,
nanoscience, immunology, drug delivery, and medicine. Nanoparticles are prepared with silica, iron oxide, gold, carbon, or metal organic
polyhedra (MOPs) or frameworks (MOFs). NASe/ES can be incorporated in liposomes to analyze HA–Neu5Ac cleavage. SGP, HA, LPS, and Sias can be
incorporated on the surface of SCoV-MNPs using polyarginine (Rn).
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Sias and encompassed by ESs/NASes but without the
SARS-CoV-2 RNA. Subsequently, the microspectroscopic
correlation of SPG- or HA-based binding of SCoV-MNPs
to Sias in human respiratory/lung epithelial cells has helped
increase the understanding of the mode of infection. In
addition, SCoV-MNPs decorated with proton-buffering
molecules will be helpful for revealing the endolysosomal
pathway and the viral uncoating processes. Such virus
mimetics can be modified into antiviral drugs engaged in
the endosomal arrest of SARS-CoV-2. Fluorescence-
assisted cell sorting, confocal fluorescence microscopy,
super-resolution fluorescence imaging, and Förster reso-
nance energy transfer-microspectroscopy are powerful
tools for analyzing the binding, membrane fusion, endo-
cytosis, uncoating, the formation of progeny virions, and
the release of SARS-CoV-2. In such studies, fluorescence
probes and energy donors can be selected from among
organic dyes, fluorescent proteins, or brilliantly lumines-
cent semiconductor quantum dots. These studies will be
helpful for evaluating the stereoselectivity of ESs and
NASes in SCoV-MNPs to O-linked glycans. In addition,
the escape of CoVs from the host innate immune response
can be analyzed using SCoV-MNPs decorated with Sias.
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